Technical Library | 2023-01-17 17:27:13.0
Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)
Technical Library | 2014-08-07 15:13:44.0
Gold embrittlement in SnPb solder is a well-known failure mechanism in electronic assembly. To avoid this issue, prior studies have indicated a maximum gold content of three weight percent. This study attempts to provide similar guidance for Pb-free (SAC305) solder. Standard surface mount devices were assembled with SnPb and SAC305 solder onto printed boards with various thicknesses of gold plating. The gold plating included electroless nickel immersion gold (ENIG) and electrolytic gold of 15, 25, 35, and 50 microinches over nickel. These gold thicknesses resulted in weight percentages between 0.4 to 7.0 weight percent.
Technical Library | 2010-04-29 21:40:37.0
The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for Sn3.0Ag0.5Cu (SAC305) soldered joints.
Technical Library | 2010-07-08 19:56:15.0
As technology becomes increasingly reliant on electronics, understanding the reliability of lead-free solder also becomes increasingly important. This research project focused on phase transformation kinetics with the lead-free solder SAC 305. Today in the electronics industry, SAC 305 is the most widely used solder, making it a high priority to understand its long-term stability and performance in a variety of service conditions. Recent evidence has shifted the focus from thermal aging to reflow temperature and time above liquidus values during initial solder melting.
Technical Library | 2016-09-01 16:21:11.0
Sn3.0Ag0.5Cu (SAC305) is currently the most popular near eutectic lead-free alloy used in the manufacturing processes. Over the last several years, the price of silver has dramatically increased driving a desire for lower silver alloy alternatives. As a result, there is a significant increase in the number of alternative low/no silver lead-free solder alloys available in the industry recently. Our previous study showed that many alternative low silver solder paste materials had good printing and wetting performance as compared to SAC305 solder pastes. However, there is lack of information on the reliability of alternative alloy solder joints assembled using alternative low silver alloy solder pastes.In this paper, we will present the reliability study of lead-free solder joints reflowed using various lead-free alloy solder pastes after thermal cycling test (3000 cycles, 0°C to 100°C). Six different lead-free pastes were investigated. SAC305 solder joints were used as the control. Low and no silver solder pastes and a low temperature SnBiAg solder pastes were also included.
Technical Library | 2014-10-02 20:10:07.0
Sn3.0Ag0.5Cu (SAC305) is the most popular near eutectic lead-free alloy used in the manufacturing processes. Over the last several years, the price of silver has dramatically increased driving a desire for lower silver alloy alternatives. As the results, there is a significant increase in the number of alternative low/no silver lead-free solder alloys available in the industry recently.In this paper, we'll present the performance and process capability of various low/no silver alloy solder pastes. Data from printability, wetting test, slump test, solder ball test, voiding, etc… will be discussed and compared with the control SAC305 solder paste. Benefits and concerns of using low/no silver alloy solder paste materials will also be addressed.
Technical Library | 2013-07-11 15:22:40.0
This research paper will focus on the effect of various parameters that are used to reball a BGA and their effect on the overall shear strength. Factors that will be looked at include the type of BGA (SAC305 or 63Sn/37Pb), the alloy used to reball (SAC405 or 63Sn/37Pb), the type of flux used (Water Soluble or No Clean), and the environment in which reballing takes place (Nitrogen or Ambient).
Technical Library | 2007-03-08 19:31:10.0
Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force.
Technical Library | 2015-07-01 16:51:43.0
Aerospace and military companies continue to exercise RoHS exemptions and to intensively research the long term attachment reliability of RoHS compliant solders. Their products require higher vibration, drop/shock performance, and combined-environment reliability than the conventional SAC305 alloy provides. The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. One possible route to improvement of the mechanical and thermo-mechanical properties of solder joints is the use of Pb-free solders with lower process temperatures. Lower temperatures help reduce the possibility of damaging the boards and components, and also may allow for the use of lower Tg board materials which are less prone to pad cratering defects. There are several Sn-Ag-Bi and Sn-Ag-Cu-Bi alloys which melt about 10°C lower than SAC305. The bismuth in these solder compositions not only reduces the melting temperature, but also improves thermo-mechanical behavior. An additional benefit of using Bi-containing solder alloys is the possibility to reduce the propensity to whisker growth
Technical Library | 2007-11-15 15:54:44.0
At the contractor level once a product is required to be soldered with lead-free solders all the processes must be assessed as to insure the same quality a customer has been accustomed to with a Sn63Pb37 process is achieved. The reflow, wave soldering and hand assembly processes must all be optimized carefully to insure good joint formation as per the appropriate class of electronics with new solder alloys and often new fluxes.