Technical Library: enig reflow temperature profile (Page 1 of 3)

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

Thermal Profiling for Reflow

Technical Library | 2019-05-21 17:23:47.0

Reflow temperature profiling is the most important aspect of proper control of the solder reflow process. It may appear to some to be a magical art practiced by a select experienced few, who are able to divine the proper settings for a reflow oven by reading graphs as if they were tea leaves. This does not have to be true. This article outlines a systematic method by which engineers and technicians can implement a successful reflow process from scratch.

ACI Technologies, Inc.

Surface Finish Issues Affecting Solderability and Reliability

Technical Library | 2019-06-07 14:49:54.0

ACI Technologies was contacted in regards to poor solder joint reliability. The customer submitted an assembly that was exhibiting intermittent opens at multiple locations on a ball grid array (BGA) component. The assembly’s functionality did not survive international shipping, essentially shock and vibration failures, immediately making the quality of the solder joints suspect. The customer was asked about the contract manufacturer and the reflow oven profile as well as the solder paste and surface finish used. The ACI engineering staff evaluated the contract manufacturer’s technique and determined that they were competent in the methods they used for placing thermocouples in the proper locations and developing the reflow oven profile. The surface finish was unusual, but not unheard of, in that it was hard gold over hard nickel, rather than electroless nickel immersion gold (ENIG). The customer was able to supply boundary scan testing data which showed a diagonal row of troublesome BGA pins.

ACI Technologies, Inc.

Reflow Experiment

Technical Library | 2019-06-11 09:36:13.0

An experiment was recently performed ACI Technologies for a customer that was interested in comparing the wetting of lead-free solders with varying temperature profiles and atmospheric conditions. In order to deliver an objective measurement of solder wetting (in addition to subjective inspection analysis), a simple wetting indicator pattern was added to the solder stencil in an area on the test vehicle that had exposed and unused copper.

ACI Technologies, Inc.

Evaluating The Accuracy Of a Nondestructive Thermocouple Attach Method For Area-Array Package Profiling

Technical Library | 2011-01-06 18:03:18.0

The oven recipe, which consists of the reflow oven zone temperature settings and the speed of the conveyor, will determine a specific time‐temperature profile for a given PCB assembly. In order to achieve a good quality PCB assembly, the time‐temperature

KIC Thermal

First Principles of Solder Reflow

Technical Library | 2006-12-18 14:55:35.0

Many solder users have preconceived notions and worries involving reflow profiling guidelines. Year after year of reading profiling recommendations in industry publications, from a litany of pundits, has made it clear that perfect profiles exist and should be sought after. They feel if the solder supplier gives them a tidy drawing on a piece of paper with times and temperatures that it will magically solve all their reflow problems. This is, unfortunately, an often incorrect assumption.

Nordson EFD

How to Profile a PCB

Technical Library | 2009-04-22 21:13:19.0

An optimal reflow profile is one of the most critical factors in achieving quality solder joints on a printed circuit board (PCB) assembly with surface mount components. A profile is a function of temperatures applied to the assembly over time. When graphed on a Cartesian plane, a curve is formed that represents the temperature at a specific point on the PCB, at any given time, throughout the reflow process.

DDM Novastar Inc

How to Profile a PCB.

Technical Library | 2010-09-10 09:47:06.0

An optimal reflow profile is one of the most critical factors in achieving quality solder joints on a printed circuit board (PCB) assembly with surface mount components. A profile is a function of temperatures applied to the assembly over time. When graphed on a Cartesian plane, a curve is formed that represents the temperature at a specific point on the PCB, at any given time, throughout the reflow process.

Robert Bosch LLC Automotive Electronics Division

Effects of Reflow Profile and Thermal Conditioning on Intermetallic Compound Thickness for SnAgCu Soldered Joints

Technical Library | 2010-04-29 21:40:37.0

The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for Sn3.0Ag0.5Cu (SAC305) soldered joints.

Flex (Flextronics International)

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

  1 2 3 Next

enig reflow temperature profile searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven