Technical Library: entrapment (Page 1 of 1)

Potting And Encapsulating – Avoiding Voids

Technical Library | 2021-08-11 00:52:35.0

Formulators of multi-component adhesives, potting and encapsulation materials are careful not to supply products with entrapped air. They do this by manufacturing under vacuum or degassing them before supplying to the end user. Consequently, entrapped air in a mixed material is usually a processing issue.

Intertronics

why need Under vaccum potting machine for motor stator iginition coil

Technical Library | 2021-12-31 06:55:24.0

Any air entrapment in the potting compound can result in air bubbles that may cause performance problems in the finished component. Potting under vacuum is therefore frequently required to prevent air entrapment, especially with the increasingly small and complex assemblies required in today's electronics

Guangzhou Daheng Automation Equipment Co.,LTD

why need Under vaccum potting machine for motor stator iginition coil

Technical Library | 2021-12-31 06:56:02.0

Any air entrapment in the potting compound can result in air bubbles that may cause performance problems in the finished component. Potting under vacuum is therefore frequently required to prevent air entrapment, especially with the increasingly small and complex assemblies required in today's electronics

Guangzhou Daheng Automation Equipment Co.,LTD

Controlling Moisture during Inner layer Processing

Technical Library | 2024-09-02 18:48:58.0

The conversion to higher temperature "Lead Free" assembly reflow conditions has created an increased awareness that entrapped or absorbed moisture is a frequent root cause of thermally induced delamination at assembly reflow. There are two connected failure modes from entrapped moisture; incomplete resin cross-linking resulting in premature resin decomposition and also severe Z axis expansion from "explosive vaporization of the entrapped moisture at elevated temperatures at assembly reflow". Ultimately, both result in delamination failure. Other papers have shown the negative effects of entrapped moisture before lamination including delamination, red color, reduced thermal reliability and increased high speed signal loss. In this paper, various materials were tested for moisture sensitivity during lamination. Tests were performed at varying lamination conditions including a pre-vacuum step and "kiss" step. Pressure and cure temperature parameters were evaluated for minimizing or eliminating the effect of trapped moisture. Also included are the results of inner layer moisture removal baking conditions and their effect on peel strength and thermal reliability.

MacDermid, Inc.

Speed Printing of SMT Adhesives

Technical Library | 1999-04-15 06:54:01.0

High-speed printing techniques are revealed that break the speed barrier resulting from air entrapment in large apertures at fast squeegee speeds. Adhesive printability test results using conventional thickness stencils to achieve a significant range of d

Heraeus

To dispense material under vacuum or dispense degassed material in atmosphere ….that is the question

Technical Library | 2018-08-23 07:47:57.0

Simply put, the proper system design and use of vacuum in the potting process can make the difference between a mediocre part and a perfect part. Air entrapment is inevitable whether you utilize syringes, cartridges, pails, or drums of material in the process.

Scheugenpflug Inc.

Via In Pad - Conductive Fill or Non-Conductive Fill?

Technical Library | 2020-07-15 18:29:34.0

In the early 2000s the first fine-pitch ball grid array devices became popular with designers looking to pack as much horsepower into as small a space as possible. "Smaller is better" became the rule and with that the mechanical drilling world became severely impacted by available drill bit sizes, aspect ratios, and plating methodologies. First of all, the diameter of the drill needed to be in the 0.006" or smaller range due to the reduction of pad size and spacing pitch. Secondly, the aspect ratio (depth to diameter) became limited by drill flute length, positional accuracy, rigidity of the tools (to prevent breakage), and the throwing power of acid copper plating systems. And lastly, the plating needed to close up the hole as much as possible, which led to problems with voiding, incomplete fill, and gas/solution entrapment.

Advanced Circuits

Influence of Pd Thickness on Micro Void Formation of Solder Joints in ENEPIG Surface Finish

Technical Library | 2012-12-13 21:20:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. We investigated the micro-void formation of solder joints after reliability tests such as preconditioning (precon) and thermal cycle (TC) by varying the thickness of Palladium (Pd) in Electroless Nickel / Electroless Palladium / Immersion Gold (ENEPIG) surface finish. We used lead-free solder of Sn-1.2Ag-0.5Cu-Ni (LF35). We found multiple micro-voids of less than 10 µm line up within or above the intermetallic compound (IMC) layer. The number of micro-voids increased with the palladium (Pd) layer thickness. Our results revealed that the micro-void formation should be related to (Pd, Ni)Sn4 phase resulted from thick Pd layer. We propose that micro-voids may form due to either entrapping of volatile gas by (Pd, Ni)Sn4 or creeping of (Pd, Ni)Sn4.

Samsung Electro-Mechanics

Evaluation of No-Clean Flux Residues Remaining After Secondary Process Operations

Technical Library | 2023-04-17 17:05:47.0

In an ideal world, manufacturing devices would work all of the time, however, every company receives customer returns for a variety of reasons. If these returned parts contributed to a fail, most companies will perform failure analysis (FA) on the returned parts to determine the root cause of the failure. Failure can occur for a multitude of reasons, for example: wear out, fatigue, design issues, manufacturing flaw or defect. This information is then used to improve the overall quality of the product and prevent reoccurrence. If no defect is found, it is possible that in fact the product has no defect. On the other hand, the defect could be elusive and the FA techniques insufficient to detect said deficiency. No-clean flux residues can cause intermittent or elusive, hard to find defects. In an attempt to understand the effects of no-clean flux residues from the secondary soldering and cleaning processes, a matrix of varying process and cleaning operation was investigated. Of special interest, traveling flux residues and entrapped residues were examined, as well as localized and batch cleaning processes. Various techniques were employed to test the remaining residues in order to assess their propensity to cause a latent failure. These techniques include Surface Insulation Resistance1 (SIR) testing at 40⁰C/90% RH, 5 VDC bias along with C32 testing and Ion Exchange Chromatography (IC). These techniques facilitate the assessment of the capillary effect the tight spacing these component structures have when flux residues are present. It is expected that dendritic shorting and measurable current leakage will occur, indicating a failing SIR test. However, since the residue resides under the discrete components, there will be no visual evidence of dendritic growth or metal migration.

Foresite Inc.

Comparison of ROSE, C3/IC, and SIR as an effective cleanliness verification test for post soldered PCBA

Technical Library | 2023-04-17 21:17:59.0

The purpose of this paper is to evaluate and compare the effectiveness and sensitivity of different cleanliness verification tests for post soldered printed circuit board assemblies (PCBAs) to provide an understanding of current industry practice for ionic contamination detection limits. Design/methodology/approach – PCBAs were subjected to different flux residue cleaning dwell times and cleanliness levels were verified with resistivity of solvent extract, critical cleanliness control (C3) test, and ion chromatography analyses to provide results capable of differentiating different sensitivity levels for each test. Findings – This study provides an understanding of current industry practice for ionic contamination detection using verification tests with different detection sensitivity levels. Some of the available cleanliness monitoring systems, particularly at critical areas of circuitry that are prone to product failure and residue entrapment, may have been overlooked. Research limitations/implications – Only Sn/Pb, clean type flux residue was evaluated. Thus, the current study was not an all encompassing project that is representative of other chemistry-based flux residues. Practical implications – The paper provides a reference that can be used to determine the most suitable and effective verification test for the detection of ionic contamination on PCBAs. Originality/value – Flux residue-related problems have long existed in the industry. The findings presented in this paper give a basic understanding to PCBA manufacturers when they are trying to choose the most suitable and effective verification test for the detection of ionic contamination on their products. Hence, the negative impact of flux residue on the respective product's long-term reliability and performance can be minimized and monitored effectively.

Jabil Circuit, Inc.

  1  

entrapment searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Fluid Dispensing, Staking, TIM, Solder Paste

Software for SMT placement & AOI - Free Download.
best pcb reflow oven

Training online, at your facility, or at one of our worldwide training centers"
PCB Handling Machine with CE

High Resolution Fast Speed Industrial Cameras.
Fully Automatic BGA Rework Station

Original SMT Feeders and spares for Panasonic, Fuji , Yamaha, Juki , Samsung