Technical Library: equipment validation (Page 1 of 1)

Optimization of Stencil Apertures to Compensate for Scooping During Printing

Technical Library | 2018-03-07 22:41:05.0

This study investigates the scooping effect during solder paste printing as a function of aperture width, aperture length and squeegee pressure. The percent of the theoretical volume deposited depends on the PWB topography. A typical bimodal percent volume distribution is attributed to poor release apertures and large apertures, where scooping takes place, yielding percent volumes 100%. This printing experiment is done with a concomitant validation of the printing process using standard 3D Solder Paste Inspection (SPI) equipment.

Qual-Pro Corporation

ASSESSMENT OF ACCRUED THERMO-MECHANICAL DAMAGE IN LEADFREE PARTS DURING FIELD-EXPOSURE TO MULTIPLE ENVIRONMENTS

Technical Library | 2022-10-11 20:29:31.0

Electronic assemblies deployed in harsh environments may be subjected to multiple thermal environments during the use-life of the equipment. Often the equipment may not have any macro-indicators of damage such as cracks or delamination. Quantiication of thermal environments during use-life is often not feasible because of the data-capture and storage requirements, and the overhead on core-system functionality. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. The presented PHM framework is targeted towards high reliability applications such as avionic and space systems. In this paper, Sn3.0Ag0.5Cu alloy packages have been subjected to multiple thermal cycling environments including -55 to 125C and 0 to 100C. Assemblies investigated include area-array packages soldered on FR4 printed circuit cards. The methodology involves the use of condition monitoring devices, for gathering data on damage pre-cursors at periodic intervals. Damage-state interrogation technique has been developed based on the Levenberg-Marquardt Algorithm in conjunction with the microstructural damage evolution proxies. The presented technique is applicable to electronic assemblies which have been deployed on one thermal environment, then withdrawn from service and targeted for redeployment in a different thermal environment. Test cases have been presented to demonstrate the viability of the technique for assessment of prior damage, operational readiness and residual life for assemblies exposed to multiple thermo-mechanical environments. Prognosticated prior damage and the residual life show good correlation with experimental data, demonstrating the validity of the presented technique for multiple thermo-mechanical environments.

Auburn University

  1  

equipment validation searches for Companies, Equipment, Machines, Suppliers & Information

fluid dispenser

Reflow Soldering 101 Training Course
High Throughput Reflow Oven

Stencil Printing 101 Training Course
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
Circuit Board, PCB Assembly & electronics manufacturing service provider

Best Reflow Oven