Technical Library: excessive components (Page 1 of 1)

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

Silicone Thermally Conductive Grease: Improving Thermal Management of Electronic Assemblies

Technical Library | 2020-09-30 19:26:45.0

Introduction •Market trend: Smaller, more efficient, more powerful, run faster •ICs and other sophisticated electronic components typically operate efficiently only under a certain range of temperatures •Operational temperatures must be kept within a suitable range • Excessive heat can damage performance and can even cause system failure

Dow Electronic Materials

Cracking Problems in Low-Voltage Chip Ceramic Capacitors

Technical Library | 2022-09-25 20:03:37.0

Cracking remains the major reason of failures in multilayer ceramic capacitors (MLCCs) used in space electronics. Due to a tight quality control of space-grade components, the probability that as manufactured capacitors have cracks is relatively low, and cracking is often occurs during assembly, handling and the following testing of the systems. Majority of capacitors with cracks are revealed during the integration and testing period, but although extremely rarely, defective parts remain undetected and result in failures during the mission. Manual soldering and rework that are often used during low volume production of circuit boards for space aggravate this situation. Although failures of MLCCs are often attributed to the post-manufacturing stresses, in many cases they are due to a combination of certain deviations in the manufacturing processes that result in hidden defects in the parts and excessive stresses during assembly and use. This report gives an overview of design, manufacturing and testing processes of MLCCs focusing on elements related to cracking problems. The existing and new screening and qualification procedures and techniques are briefly described and assessed by their effectiveness in revealing cracks. The capability of different test methods to simulate stresses resulting in cracking, mechanisms of failures in capacitors with cracks, and possible methods of selecting capacitors the most robust to manual soldering stresses are discussed.

NASA Office Of Safety And Mission Assurance

  1  

excessive components searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Solder Paste Dispensing

Reflow Soldering 101 Training Course
PCB Handling Machine with CE

Software for SMT placement & AOI - Free Download.
IPC Training & Certification - Blackfox

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Hot selling SMT spare parts and professional SMT machine solutions

Low-cost, self-paced, online training on electronics manufacturing fundamentals