Technical Library: exemptions (Page 1 of 1)

Inclusion Voiding in Gull Wing Solder Joints

Technical Library | 2012-08-30 21:24:29.0

This paper provides definitions of the different voiding types encountered in Gull Wing solder joint geometries. It further provides corresponding reliability data that support some level of inclusion voiding in these solder joints and identifies the final criteria being applied for certain IBM Server applications. Such acceptance criteria can be applied using various available x-ray inspection techniques on a production or sample basis. The bulk of supporting data to date has been gathered through RoHS server exempt SnPb eutectic soldering operations but it is expected to provide a reasonable baseline for pending Pb-free solder applications.

IBM Corporation

Mixed Metals Impact on Reliability

Technical Library | 2013-12-19 16:57:50.0

With the adoption of RoHS and implementation of Lead Free solders a major concern is how this will impact reliability. Both commercial and military hardware are impacted by this change even though military hardware is considered exempt from the requirements of RoHS. As the supply chain has moved to the new lead free alloys both markets are being forced to understand these impacts and form risk mitigation strategies to deal with the change. This paper documents the effect of mixing Leaded and Lead Free alloys on BGA devices and how this impacts reliability. Three of the most common pitch BGA packages are included in the study to determine if the risk is the same as pitches decrease

Nextek

The Effect of Pb Mixing Levels on Solder Joint Reliability and Failure Mode of Backward Compatible, High Density Ball Grid Array Assemblies

Technical Library | 2015-01-08 17:26:59.0

Regardless of the accelerating trend for design and conversion to Pb-free manufacturing, many high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products. Certain high reliability electronic products from the telecommunication, military, and medical sectors manufacture using SnPb solder assembly and remain in compliance with the RoHS Directive (restriction on certain hazardous substances) by invoking the European Union Pb-in-solder exemption. Sustaining SnPb manufacturing has become more challenging because the global component supply chain is converting rapidly to Pb-free offerings and has a decreasing motivation to continue producing SnPb product for the low-volume, high reliability end users. Availability of critical, larger SnPb BGA components is a growing concern

Sanmina-SCI

Reliability Screening of Lower Melting Point Pb-Free Alloys Containing Bi

Technical Library | 2015-07-01 16:51:43.0

Aerospace and military companies continue to exercise RoHS exemptions and to intensively research the long term attachment reliability of RoHS compliant solders. Their products require higher vibration, drop/shock performance, and combined-environment reliability than the conventional SAC305 alloy provides. The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. One possible route to improvement of the mechanical and thermo-mechanical properties of solder joints is the use of Pb-free solders with lower process temperatures. Lower temperatures help reduce the possibility of damaging the boards and components, and also may allow for the use of lower Tg board materials which are less prone to pad cratering defects. There are several Sn-Ag-Bi and Sn-Ag-Cu-Bi alloys which melt about 10°C lower than SAC305. The bismuth in these solder compositions not only reduces the melting temperature, but also improves thermo-mechanical behavior. An additional benefit of using Bi-containing solder alloys is the possibility to reduce the propensity to whisker growth

Honeywell International

Effect of Alloy and Flux System on High Reliability Automotive Applications

Technical Library | 2017-01-05 16:55:11.0

The July 2006 implementation of ROHS exempted automotive applications from converting to lead free technology. Nine years later, all major OEM and Tier 1 automotive manufacturers have converted or are in the process of converting to lead free circuit assembly processing. Starting with SAC (SnAgCu) alloys as a baseline for lead free soldering, in the last years several specific alloys were developed in order to improve resistance to high temperature creep, vibration survival and the ability to withstand thermal cycling and thermal shock.The paper compares three different solder alloys and two flux chemistries in terms of void formation and mechanical / thermal fatigue properties. Void content and reliability data of the alloys will be presented and discussed in relation to the acceptance criteria of a Tier 1 /OEM automotive supplier. As a result, a ranking list will be presented considering the combined performance of the alloys. In order to analyze the void formation and mechanical behavior of different solder alloys and flux chemistry combinations, statistical methods are used.

MacDermid Alpha Electronics Solutions

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

  1  

exemptions searches for Companies, Equipment, Machines, Suppliers & Information

SMT spare parts - Qinyi Electronics

Component Placement 101 Training Course
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
2024 Eptac IPC Certification Training Schedule

Training online, at your facility, or at one of our worldwide training centers"
SMT spare parts

Low-cost, self-paced, online training on electronics manufacturing fundamentals