Technical Library: exposed copper on leads (Page 1 of 2)

Platings for Interconnections

Technical Library | 2019-06-04 10:19:46.0

Interconnection technology relies very heavily on the ability of the conductors on a printed wiring assembly to maintain reliable signal integrity. Harsh environmental factors can precipitate a loss of conductivity due to oxidation and corrosion. Connections are typically soldered or inserted using pressure fitted connectors to obtain enough surface contact to meet the electrical conductivity requirements. In pressure contacts, surface integrity is especially critical where the abrasive effects of retraction and insertion can wear off the metallic finish from the contact area. This can expose the underlying copper or nickel and lead to increased resistance at the contact points. These types of conductors are frequently found in card edge connectors where the terminations are plated with a layer of nickel and gold (frequently referred to as gold fingers). A hard gold is typically used containing very small amounts of nickel and cobalt to increase the wear resistance.

ACI Technologies, Inc.

Reflow Experiment

Technical Library | 2019-06-11 09:36:13.0

An experiment was recently performed ACI Technologies for a customer that was interested in comparing the wetting of lead-free solders with varying temperature profiles and atmospheric conditions. In order to deliver an objective measurement of solder wetting (in addition to subjective inspection analysis), a simple wetting indicator pattern was added to the solder stencil in an area on the test vehicle that had exposed and unused copper.

ACI Technologies, Inc.

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

Effects of Tin Whisker Formation on Nanocrystalline Copper

Technical Library | 2023-02-13 19:23:18.0

Spontaneously forming tin whiskers, which emerge unpredictably from pure tin surfaces, have regained prevalence as a topic within the electronics research community. This has resulted from the ROHS-driven conversion to "lead-free" solderable finish processes. Intrinsic stresses (and/or gradients) in plated films are considered to be a primary driving force behind the growth of tin whiskers. This paper compares the formation of tin whiskers on nanocrystalline and conventional polycrystalline copper deposits. Nanocrystalline copper under-metal deposits were investigated, in terms of their ability to mitigate whisker formation, because of their fine grain size and reduced film stress. Pure tin films were deposited using matte and bright electroplating, electroless plating, and electron beam evaporation. The samples were then subjected to thermal cycling conditions in order to expedite whisker growth. The resultant surface morphologies and whisker formations were evaluated.

Johns Hopkins Applied Physics Laboratory

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2023-08-04 15:27:30.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2024-04-08 15:46:36.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Photonic Flash Soldering on Flex Foils for Flexible Electronic Systems

Technical Library | 2021-11-03 16:49:59.0

Ultrathin bare die chips were soldered using a novel soldering technology. Using homogeneous flash light generated by high-power xenon flash lamp the dummy components and the bare die NFC chips were successfully soldered to copper tracks on polyimide (PI) and polyethylene terephthalate (PET) flex foils by using industry standard Sn-Ag-Cu lead free alloys. Due to the selectivity of light absorption, a limited temperature increase was observed in the PET substrates while the chip and copper tracks were rapidly heated to a temperatures above the solder melting temperature. This allowed to successfully soldered components onto the delicate polyethylene foil substrates using lead-free alloys with liquidus temperatures above 200 °C. It was shown that by preheating components above the decomposition temperature of solder paste flux with a set of short low intensity pulses the processing window could be significantly extended compared to the process with direct illumination of chips with high intensity flash pulse. Furthermore, it was demonstrated that with localized tuning of pulse intensity components having different heat capacity could be simultaneously soldered using a single flash pulse.

NovaCentrix

Effect of Cooling Rate on the Intermetallic Layer in Solder Joints

Technical Library | 2013-02-28 17:14:36.0

While it has long been known that the Cu6Sn5 intermetallic that plays a critical role in the reliability of solder joints made with tin-containing alloys on copper substrates exists in two different crystal forms over the temperature range to which electronics circuitry is exposed during assembly and service, it has only recently been recognized that the change from one form to the other has implications for solder joint reliability. (..) In this paper the authors report a study of the effect of cooling rates on Cu6Sn5 crystals. Cooling rates from 200°C ranged from 10°C/minute to 100°C/minute and the effect of isothermal ageing at intermediate temperatures was also studied. The extent of the phase transformation after each regime was determined using synchrotron X-ray diffraction. The findings have important implications for the manufacture of solder joints and their in-service performance... First published in the 2012 IPC APEX EXPO technical conference proceedings....

Nihon Superior Co., Ltd.

Effects of Thermal Aging on Copper Dissolution For SAC 405 Alloy

Technical Library | 2010-07-08 19:49:59.0

Aging characteristics of new lead free solder alloys are in question by many experts because of higher amount of tin’s effect on the diffusion of other metals, primarily copper, to create undesirable boundary intermetallics over long periods of time and even moderately elevated temperatures. A primary layer of intermetallics, Cu6Sn5 forms as the liquid solder makes contact with the solid copper substrate. This reaction however ceases as the solder temperature falls below that of liquidus. A secondary intermetallic Cu3Sn1, an undesirable weak and brittle layer, is thought to form over time and may be accelerated by even mildly elevated temperatures in electronic modules such as laptops under power. This project was designed to quantify the growth rate of Cu3Sn1 over an extended period of time in a thermal environment similar to a laptop in the power on mode.

Radiance Technologies

Statistical Aspect on the Measuring of Intermetallic Compound Thickness of Lead Free Solders

Technical Library | 2018-05-17 11:14:52.0

Intermetallic compound (IMC) growth is being studied in earnest in this past decade because of its significant effect the solder joint reliability. It appears that from numerous investigations conducted, excessive growth of IMC could lead to solder joint failure. Leading to this, many attempts has been made to determine the actual IMC thickness. However, precise and true representation of the growth in the actual 3D phenomenon from 2D cross-section investigations has remained unclear. This paper will focus on the measuring the IMC thickness using 3D surface profilometer (Alicona Focus G4). Lead free solder, Sn3.0Ag0.5Cu (SAC305) was soldered onto copper printed circuit board (Cu PCB). The samples were then subjected to thermal cycle (TC) storage process with temperature range from 0 °C to 100 °C for 200 cycles and up to 1000 cycles were completed.

Universiti Kebangsaan Malaysia

  1 2 Next

exposed copper on leads searches for Companies, Equipment, Machines, Suppliers & Information

Count On Tools, Inc.
Count On Tools, Inc.

COT specializes in high quality SMT nozzles and consumables for pick and place machines. We provide special engineering design service of custom nozzles for those unique and odd components.

Manufacturer

2481 Hilton Drive
Gainesville, GA USA

Phone: (770) 538-0411

Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven
fluid dispenser

Training online, at your facility, or at one of our worldwide training centers"
Electronics Equipment Consignment

World's Best Reflow Oven Customizable for Unique Applications
IPC Training & Certification - Blackfox

High Resolution Fast Speed Industrial Cameras.