Technical Library | 2023-11-22 09:17:49.0
In the dynamic realm of Industry 4.0, I.C.T introduces the I.C.T-T550 SMT PCB coating machine, a pioneering addition designed to meet the evolving needs of modern manufacturing. This advanced equipment is equipped with features that not only boost productivity but also prioritize precise and consistent coating quality. Let's delve into the crucial attributes that establish the I.C.T-T550 as a vital component in your production process. 1. Automated Precision for Coating Consistency The I.C.T-T550 PCB Coating Machine integrates an automated pressure regulation system for both dispensing valve and pressure tank, equipped with precision regulators and digital gauges. This ensures a consistent coating process, optimizing precision. 2. Front-End Accessibility for Operational Efficiency Located at the front end, power supply and air pressure adjustments are easily accessible, streamlining control. This user-friendly design enhances operator workflow efficiency. 3. Durable Material Transport The open-material transport rail undergoes hardening treatment and utilizes a specialized stainless steel chain drive, ensuring both longevity and reliable material transport. 4. Track Width Adjustment for Trouble-Free Operation Track width adjustment is achieved through a synchronous belt drive mechanism, ensuring prolonged and trouble-free operation. 5. CNC Machined Frame for Unparalleled Precision The machine's frame, subjected to CNC machining, features an independent, all-steel gantry frame, ensuring the parallel alignment of tracks and axes. 6. Workshop Environment Enhancement To ensure a cleaner and safer workspace, the equipment features air curtains at the track entrance and exit, preventing fumes from escaping. It also includes a dedicated exhaust outlet, improving overall workshop air quality. 7. Intuitive Programming and Visualization The I.C.T-T550 PCB Coating Machine allows flexible coating path editing through intuitive programming. The equipment employs a teach mode for programming, offering a visual interface for coating path design. 8. User-Friendly Interface with Practical Design Featuring a user-friendly interface with fault alerts and menu displays, the I.C.T-T550 delivers a sleek and practical design. 9. Streamlined Repetition and Data Management Efficiency is paramount, and the I.C.T-T550 offers the ability to mirror, array, and replicate coating paths, simplifying the process, especially with multiple boards. 10. Real-Time Data Monitoring The equipment automatically collects and displays data, including production volume and individual product work times, enabling effective production performance tracking. 11. Smart Adhesive Management The I.C.T-T550 intelligently monitors adhesive levels, providing automatic alerts for replenishment, ensuring uninterrupted coating. In summary, the I.C.T SMT PCB coating machine seamlessly combines precision, automation, and smart features to meet the demands of Industry 4.0. With integration into MES systems, it provides a reliable and efficient solution for elevating PCB coating processes. The I.C.T-T550's adherence to European safety standards and CE certification underscores our commitment to safety and compliance. For further inquiries or information about additional safety standards, please contact us. Whether optimizing coating quality or enhancing factory productivity, the I.C.T-T550 marks a step into the future of intelligent manufacturing. Explore a variety of coating valves or seek guidance by reaching out to us.
Technical Library | 2013-02-14 12:54:29.0
Boundary-scan (1149.1) technology was originally developed to provide a far easier method to perform digital DC testing to detect intra-IC interconnect assembly faults, such as solder shorts and opens. Today's advanced IC technology now includes high-speed differential interfaces that include AC or DC coupling components loaded on the printed circuit assembly. Simple stuck-at-high/low test methods are not sufficient to detect all assembly fault conditions, which includes shorts, opens and missing components. Improved diagnostics requires detailed circuit analysis, predictive assembly fault simulation and more complex testing to isolate and accurately detect all possible assembly faults... First published in the 2012 IPC APEX EXPO technical conference proceedings
Technical Library | 2022-12-05 16:22:13.0
This paper reviews the possible causes and effects for no-fault-found observations and intermittent fail- ures in electronic products and summarizes them into cause and effect diagrams. Several types of inter- mittent hardware failures of electronic assemblies are investigated, and their characteristics and mechanisms are explored. One solder joint intermittent failure case study is presented. The paper then discusses when no-fault-found observations should be considered as failures. Guidelines for assessment of intermittent failures are then provided in the discussion and conclusions.
Technical Library | 2010-09-02 13:13:03.0
As chip packaging and interconnectivity have become more dense and operate at higher clock frequencies, physical access for traditional bed-of-nails testing becomes limited. This results in loss of ICT (in-circuit test) fault coverage and higher test fi
Technical Library | 2021-03-24 01:26:05.0
In-circuit test (ICT) has remained one of the most popular and cost-effective test methods for medium and high volume printed circuit board assembly (PCBA) for many years. This is due to its component-level fault diagnosis capability- and its speed.
Technical Library | 2018-06-20 13:11:57.0
Manufacturers test to ensure that the product is built correctly. Shorts, opens, wrong or incorrectly inserted components, even catastrophically faulty components need to be flagged, found and repaired. When all such faults are removed, however, functional faults may still exist at normal operating speed, or even at lower speeds. Functional board test (FBT) is still required, a process that still relies on test engineers’ understanding of circuit functionality and manually developed test procedures. While functional automatic test equipment (ATE) has been reduced considerably in price, FBT test costs have not been arrested. In fact, FBT is a huge undertaking that can take several weeks or months of test engineering development, unacceptably stretching time to market. The alternative, of selling products that have not undergone comprehensive FBT is equally, if not more, intolerable.
Technical Library | 2018-08-01 11:25:59.0
With complexities of PCB design scaling and manufacturing processes adopting to environmentally friendly practices raise challenges in ensuring structural quality of PCBs. This makes it essential to have a good 'Design for Test' (DFT) to ensure a robust structural test. (...)During the course of the DFT review, can we realize a good test strategy for the PCBA. How can the test strategy of the PCBA be partitioned as to what portions of the design can be covered structurally and what is covered functionally, in a way that provides best diagnostics to discover faults
Technical Library | 2021-12-17 01:30:28.0
Diffusion silicon pressure transmitter is applied in a wide variety of industries, such as petroleum, chemical industry, steel, power, light industry and environmental protection industry. It can complete the work of measurement and control of the gauge pressure, negative pressure or absolute pressure of various fluid pressure. Most importantly, this type of transmitter can be used in corrosive medium and harsh or dangerous environment. In the process of using the transmitter, there may be some faults or problems.
Technical Library | 2021-12-22 01:35:51.0
As a speed type air compressor, centrifugal compressor can generate air flow moving in radial direction. Centrifugal air compressors are used by a large number of companies today because of their high-pressure tightness. Therefore, common faults in the operation have become one of the most concerned issues for users. This article will discuss causes of centrifugal compressor failures and give corresponding maintenance measures. At the end, OKmarts has listed the problems and solutions in detail for your quick reference.
Technical Library | 2023-08-14 20:45:11.0
The partnership of Design and Manufacturing is central to the process of bringing a product to market. The impact of problems in either of these stages can increase exponentially if they go unnoticed until after the product reaches the customer. Overstress Test (tests using stresses beyond the design limit of the product) is successful at uncovering such faults in both product design and the manufacturing process and insures the overall robustness of the product. The benefits of Overstress Test include ...