Technical Library: filaments (Page 1 of 2)

Material & Process Influences on Conductive Anodic Filamentation (CAF)

Technical Library | 2023-03-16 19:07:51.0

HISTORY: * In the late 1970s an abrupt unpredictable loss of insulation resistance was observed in PCBs, which were subject to hostile climatic conditions of high relative humidity and temperature while having an applied voltage. * The loss of resistance, even leading to a short circuit was observed to be due to the growth of a subsurface filament from the anode to the cathode. * The term "Conductive Anodic Filamentation" (CAF) was coined.

Isola Group

A New (Better) Approach to Tin Whisker Mitigation

Technical Library | 2011-03-03 16:54:47.0

Most of the electronics industry by now knows about tin whiskers. They know whiskers are slim metallic filaments that emanate from the surface of tin platings. They know these filaments are conductive and can cause shorts across adjacent conductors. And they know that these shorts can cause some really bad failures (see nepp.nasa.gov/whisker/ for a list longer than you need). But, with all of this knowledge, the industry is still struggling on how to predict and prevent these "Nefarious Needles of Pain".

DfR Solutions (acquired by ANSYS Inc)

Conductive Anodic Filament: Mechanisms and Affecting Factors

Technical Library | 2021-07-27 14:49:16.0

Conductive anodic filament (CAF) formation, a failure mode in printed wiring boards (PWBs) that are exposed to high humidity and voltage gradients, has caused catastrophic field failures. CAF is an electrochemical migration failure mechanism in PWBs. In this article, we discuss CAF, the factors that enhance it, and the necessary conditions for its occurrence. Published studies are discussed, and the results of historical mean time to failure models are summarized. Potential reasons for CAF enhancement solutions are discussed, and possible directions in which to develop anti-CAF materials are proposed.

Hong Kong Polytechnic University [The]

Dielectric Material Damage Vs. Conductive Anodic Filament Formation

Technical Library | 2021-07-27 14:57:18.0

It should be noted that this is an overview paper that represents the early stages of an ongoing investigation into the causes and effects between conductive anodic filament (CAF) formation and printed wiring board (PWB) material damage. Our belief is that certain or specific types of material damage can increase the propensity for CAF formation. The preliminary data collected suggests is that there is no statistical correlation between the general definition of material damage (cohesive failure) and CAF. The resulting dichotomy is that we find no CAF failures in some coupons that have obvious material damage and we find CAF failures in coupons that don't exhibit material damage.

PWB Interconnect Solutions Inc.

Conductive Anodic Filament Growth Failure

Technical Library | 2021-07-27 14:59:56.0

With increasing focus on reliability and miniaturized designs, Conductive Anodic Filament (CAF) as failure mechanism is gaining a lot of attention. Smaller geometries make the printed circuit board (PCB) susceptible to conductive anodic filament growth. Isola has carried out work to characterize the CAF susceptibility of various resin systems under different process and design conditions. Tests were carried out to determine the effect of various factors such as resin systems, glass finishes, voltage bias and hole and line spacings on the CAF resistance. This work was intended to provide information to the user on the suitability of various grades for specific end use applications. The focus of the work at Isola is to find the right combination of process and design conditions for improved CAF resistant products.

Isola Group

Conductive Anodic Filament (CAF) Formation: A Potential Reliability Problem for Fine-Line Circuits

Technical Library | 2023-03-16 18:57:32.0

Outline * Introduction & Background * Factors Affecting CAF Formation * CAF Formation ** Catastrophic Field Failure of Military Hardware ** Laboratory Experiments * Conclusion

Georgia Institute of Technology

A Review of Models for Time-to-Failure Due to Metallic Migration Mechanisms

Technical Library | 2009-10-14 21:17:47.0

Electrochemical migration (ECM) is defined as the growth of conductive metal filaments across a printed circuit board (PCB) in the presence of an electrolytic solution and a DC voltage bias. ECM, also known as dendritic growth, is a critical issue in the electronics industry because the intermittent failure behavior of ECM is a likely root-cause of the high occurrence of field failures identified as no trouble found (NTF)/could not duplicate (CND)

DfR Solutions (acquired by ANSYS Inc)

Electrostatic Theory of Metal Whiskers.

Technical Library | 2014-07-31 16:36:59.0

Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. Here, the existence of metal whiskers is attributed to the energy gain due to electrostatic polarization of metal filaments in the electric field. The field is induced by surface imperfections: contaminations, oxide states, grain boundaries, etc. A proposed theory provides closed form expressions and quantitative estimates for the whisker nucleation and growth rates, explains the range of whisker parameters and effects of external biasing, and predicts statistical distribution of their lengths.

University of Toledo

Conductive Anodic Filament Failure: A Materials Perspective

Technical Library | 2023-03-16 18:51:43.0

Conductive anodic filament (CAF) formation was first reported in 1976.1 This electrochemical failure mode of electronic substrates involves the growth of a copper containing filament subsurface along the epoxy-glass interface, from anode to cathode. Despite the projected lifetime reduction due to CAF, field failures were not identified in the 1980s. Recently, however, field failures of critical equipment have been reported.2 A thorough understanding of the nature of CAF is needed in order to prevent this catastrophic failure from affecting electronic assemblies in the future. Such an understanding requires a comprehensive evaluation of the factors that enhance CAF formation. These factors can be grouped into two types: (1) internal variables and (2) external influences. Internal variables include the composition of the circuit board material, and the conductor metallization and configuration (i.e. via to via, via to surface conductor or surface conductors to surface conductors). External influences can be due to (1) production and (2) storage and use. During production, the flux or hot air solder leveling (HASL) fluid choice, number and severity of temperature cycles, and the method of cleaning may influence CAF resistance. During storage and use, the principal concern is moisture uptake resulting from the ambient humidity. This paper will report on the relationship between these various factors and the formation of CAF. Specifically, we will explore the influences of printed wiring board (PWB) substrate choice as well as the influence of the soldering flux and HASL fluid choices. Due to the ever-increasing circuit density of electronic assemblies, CAF field failures are expected to increase unless careful attention is focused on material and processing choices.

Georgia Institute of Technology

Controlling Moisture in Printed Circuit Boards

Technical Library | 2019-05-01 23:18:27.0

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.

CALCE Center for Advanced Life Cycle Engineering

  1 2 Next

filaments searches for Companies, Equipment, Machines, Suppliers & Information

SMTAI 2024 - SMTA International

Component Placement 101 Training Course
Void Free Reflow Soldering

World's Best Reflow Oven Customizable for Unique Applications
Global manufacturing solutions provider

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.