Technical Library: filling hole in printing process (Page 1 of 1)

Made in Japan: Solder Paste Jet Dispensing Machine

Technical Library | 2024-03-19 07:58:40.0

Introduction of Solder Paste Jet Dispensing Machine Step into the future of manufacturing with the Solder Paste Jet Dispensing Machine, meticulously crafted in Japan under the esteemed I.C.T brand. This cutting-edge equipment represents the pinnacle of precision engineering, delivering unrivaled performance and reliability. Let's dive into its exceptional features and applications. Transmission Structure System of Solder Paste Jet Dispensing Machine At the heart of this Solder Paste Jet Dispensing Machine lies a meticulously designed transmission structure system. Powered by X Y linear motor drive control, it achieves unprecedented precision in positioning. With a reciprocating position accuracy of 3σ±5um and a dynamic position accuracy of 3σ±3um across the X, Y, and Z axes, it ensures flawless execution of tasks with minimal deviation. The load-type gantry structure further enhances stability and accuracy, guaranteeing consistent performance even during high-speed operations. Advanced Function Configuration Flexibility and customization are the hallmarks of the Solder Paste Jet Dispensing Machine. It features a customizable platform tailored to meet the specific needs of diverse applications, ensuring optimal performance and efficiency. Additionally, the machine boasts advanced functionalities such as automatic correction of substrate warp height and real-time penetration monitoring. Equipped with dual cameras, it provides precise feedback for adjustments during the filling process, ensuring unmatched precision and quality. Function configuration.jpg Vision Non-stop Experience uninterrupted precision with the Vision Non-stop functionality of this machine. Capable of detecting 100 chips per second, it automatically identifies position and height deviations, enabling real-time compensation for coating actions. Dual compensation for path and glue amount further optimizes efficiency, minimizing waste and maximizing productivity. With its ability to print solder paste dots as small as 110um, it's perfectly suited for high-precision applications in ICs, BGAs, and beyond. Versatility in Configuration Options and Applications Adaptability is key in modern manufacturing, and the Solder Paste Jet Dispensing Machine delivers on all fronts. Offering a range of configuration options, including different valves tailored to various material viscosities and fluidity, it ensures optimal performance across diverse production scenarios. From semiconductor packages to LED back-end Mini-LED production, its versatility knows no bounds, making it an indispensable asset in a wide range of industries. Explore the Future of Manufacturing with I.C.T Join the ranks of industry leaders embracing the future of manufacturing with I.C.T's Solder Paste Jet Dispensing Machine. With its unrivaled precision, speed, and reliability, it's set to revolutionize your production processes and propel your business to new heights of success. Don't just keep up with the competition--surpass it with I.C.T's cutting-edge solutions. Unlock the Potential of Precision Manufacturing Delve deeper into the transformative power of precision manufacturing and discover how the Solder Paste Jet Dispensing Machine can unlock new possibilities for your business. From reducing production costs to improving product quality, the benefits are endless. Partner with I.C.T today and embark on a journey towards manufacturing excellence. Conclusion In conclusion, our Solder Paste Jet Dispensing Machine embodies the fusion of Japanese precision and I.C.T reliability, offering unparalleled efficiency in solder paste dispensing. With its advanced features and customizable options, it caters to the diverse needs of modern manufacturing processes. Experience the pinnacle of dispensing technology with our Solder Paste Jet Dispensing Machine. Overseas Technical Support by I.C.T At I.C.T, our commitment to customer satisfaction extends beyond the initial purchase. We provide comprehensive overseas technical support, including machine installation, debugging, and customer training. Our dedicated team ensures that your production line runs smoothly from the first product off the line to the seamless delivery of the machine. Partner with I.C.T today and elevate your manufacturing precision with our Solder Paste Jet Dispensing Machine. Contact us now to learn more about our solutions and take your production processes to new heights of efficiency and reliability.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Advanced Cu Electroplating Process for Any Layer Via Fill Applications with Thin Surface Copper

Technical Library | 2019-06-26 23:21:49.0

Copper-filled micro-vias are a key technology in high density interconnect (HDI) designs that have enabled increasing miniaturization and densification of printed circuit boards for the next generation of electronic products. Compared with standard plated through holes (PTHs) copper filled vias provide greater design flexibility, improved signal performance, and can potentially help reduce layer count, thus reducing cost. Considering these advantages, there are strong incentives to optimize the via filling process. This paper presents an innovative DC acid copper via fill formulation, for VCP (Vertical Continues Plating) applications which rapidly fills vias while minimizing surface plating.

MacDermid Inc.

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2021-09-29 13:35:21.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations. Selective soldering using dedicated plates with nozzles on the solder area is the preferred way to make these connections. All joints can be soldered in one dip resulting in short cycle times. Additional soldering on a small select nozzle can make the system even more flexible. The soldering can only be successful when there is enough thermal heat in the assembly before the solder touches the board. A forced convection preheat is a must for many applications to bring enough heat into the metal and board materials. The challenge in a dip soldering process is to get a sufficient hole fill without bridging and minimize the number of solder balls. A new cover was designed to improve the nitrogen environment. Reducing oxygen levels benefits the wetting, but increases the risk for solder balling. Previous investigations showed that solder balling can be minimized by selecting proper materials for solder resist and flux.

Vitronics Soltec

Copper Electroplating Technology for Microvia Filling

Technical Library | 2021-05-26 00:53:26.0

This paper describes a copper electroplating enabling technology for filling microvias. Driven by the need for faster, smaller and higher performance communication and electronic devices, build-up technology incorporating microvias has emerged as a viable multilayer printed circuit manufacturing technology. Increased wiring density, reduced line widths, smaller through-holes and microvias are all attributes of these High Density Interconnect (HDI) packages. Filling the microvias with conductive material allows the use of stacked vias and via in pad designs thereby facilitating additional packaging density. Other potential design attributes include thermal management enhancement and benefits for high frequency circuitry. Electrodeposited copper can be utilized for filling microvias and provides potential advantages over alternative via plugging techniques. The features, development, scale up and results of direct current (DC) and periodic pulse reverse (PPR) acid copper via filling processes, including chemistry and equipment, are described.

Rohm and Haas/Advanced Materials

The Importance of Copper Pour in PCB Design and Manufacturing

Technical Library | 2024-10-26 06:26:24.0

Copper pour is an essential design element in printed circuit boards (PCBs) that enhances thermal management, signal integrity, and electrical grounding. It involves filling unused areas on the board with copper, connecting them to power or ground planes. This feature helps manage heat dissipation, minimizes electromagnetic interference (EMI), and provides stable electrical grounding for complex circuits. While copper pour offers significant benefits, improper implementation may lead to manufacturing challenges like warping or soldering difficulties. This article explores the advantages of copper pour, the potential challenges, and how PCB Power integrates this design feature to optimize performance and durability. With advanced manufacturing processes, PCB Power ensures seamless copper pour integration for prototypes and large-scale production, offering turnkey PCB solutions for various industries.

PCB Power Market

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

Innovative Electroplating Processes for IC Substrates - Via Fill, Through Hole Fill, and Embedded Trench Fill

Technical Library | 2021-06-21 19:34:02.0

In this era of electronics miniaturization, high yield and low-cost integrated circuit (IC) substrates play a crucial role by providing a reliable method of high density interconnection of chip to board. In order to maximize substrate real-estate, the distance between Cu traces also known as line and space (L/S) should be minimized. Typical PCB technology consists of L/S larger than 40 µ whereas more advanced wafer level technology currently sits at or around 2 µm L/S. In the past decade, the chip size has decreased significantly along with the L/S on the substrate. The decreasing chip scales and smaller L/S distances has created unique challenges for both printed circuit board (PCB) industry and the semiconductor industry. Fan-out panel-level packaging (FOPLP) is a new manufacturing technology that seeks to bring the PCB world and IC/semiconductor world even closer. While FOPLP is still an emerging technology, the amount of high-volume production in this market space provide a financial incentive to develop innovative solutions in order to enable its ramp up. The most important performance aspect of the fine line plating in this market space is plating uniformity or planarity. Plating uniformity, trace/via top planarity, which measures how flat the top of the traces and vias are a few major features. This is especially important in multilayer processing, as nonuniformity on a lower layer can be transferred to successive layers, disrupting the device design with catastrophic consequences such as short circuits. Additionally, a non-planar surface could also result in signal transmission loss by distortion of the connecting points, like vias and traces. Therefore, plating solutions that provide a uniform, planar profile without any special post treatment are quite desirable.

MacDermid Inc.

  1  

filling hole in printing process searches for Companies, Equipment, Machines, Suppliers & Information