Technical Library: fine pitch lazer soldering (Page 1 of 2)

Vacuum Fluxless Reflow Technology for Fine Pitch First Level Interconnect Bumping Applications

Technical Library | 2023-01-17 17:58:36.0

Heterogeneous integration has become an important performance enabler as high-performance computing (HPC) demands continue to rise. The focus to enable heterogeneous integration scaling is to push interconnect density limit with increased bandwidth and improved power efficiency. Many different advanced packaging architectures have been deployed to increase I/O wire / area density for higher data bandwidth requirements, and to enable more effective die disaggregation. Embedded Multi-die Interconnect Bridge (EMIB) technology is an advanced, cost-effective approach to in-package high density interconnect of heterogeneous chips, providing high density I/O, and controlled electrical interconnect paths between multiple dice in a package. In emerging architectures, it is required to scale down the EMIB die bump pitch in order to further increase the die-to-die (D2D) communication bandwidth. Aa a result, bump pitch scaling poses significant challenges in the plated solder bump reflow process, e.g., bump height / coplanarity control, solder wicking control, and bump void control. It's crucial to ensure a high-quality solder bump reflow process to meet the final product reliability requirements. In this paper, a combined formic acid based fluxless and vacuum assisted reflow process is developed for fine pitch plated solder bumping application. A high-volume production (HVM) ready tool has been developed for this process.

Heller Industries Inc.

Step Stencil design when 01005 and 0.3mm pitch uBGA's coexist with RF Shields

Technical Library | 2023-07-25 16:50:02.0

Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.

Photo Stencil LLC

Stencil Design Using Regression:Following IPC 7525 a Way Better

Technical Library | 2010-03-25 06:26:37.0

The complexity of Printed Circuit Assembly process is increasing day by day and causing productivity issues in the industry, introducing ultra fine pitch components (pitch less than 15mil) in PCA is a challenge to minimize risk of defects as solder short, dry solder. This paper is focusing on minimizing these defects.

Larsen Toubro Medical Equipment & Systems Ltd

Aiming for High First-pass Yields in a Lead-free Environment

Technical Library | 2010-03-04 18:11:53.0

While the electronics manufacturing industry has been occupied with the challenge of RoHS compliance and with it, Pb-free soldering, established trends of increasing functionality and miniaturization have continued. The increasing use of ultra-fine pitch and area-array devices presents challenges in both printing and flux technology. With the decrease in both the size and the pitch of said components, new problems may arise, such as head-in-pillow and graping defects

Indium Corporation

Study on Solder Joint Reliability of Fine Pitch CSP

Technical Library | 2015-12-31 15:19:28.0

Today's consumer electronic product are characterized by miniatuization, portability and light weight with high performance, especially for 3G mobile products. In the future more fine pitch CSPs (0.4mm) component will be required. However, the product reliability has been a big challenge with the fine pitch CSP. Firstly, the fine pitch CSPs are with smaller solder balls of 0.25mm diameter or even smaller. The small solder ball and pad size do weaken the solder connection and the adhesion of the pad and substrate, thus the pad will peel off easily from the PCB substrate. In addition, miniature solder joint reduce the strength during mechanical vibration, thermal shock, fatigue failure, etc. Secondly, applying sufficient solder paste evenly on the small pad of the CSP is difficult because stencil opening is only 0.25mm or less. This issue can be solved using the high end type of stencil such as Electroforming which will increase the cost.

Flex (Flextronics International)

Position Accuracy Machines for Selective Soldering Fine Pitch Components

Technical Library | 2015-02-27 17:06:01.0

The drive towards fine pitch technology also affects the soldering processes. Selective soldering is a reliable soldering process for THT (through hole) connectors and offers a wide process window for designers. THT connectors can be soldered on the top and bottom side of boards, board in board, PCBs to metal shields or housing out of plastic or aluminum are today's state of the art. The materials that are used to make the solder connections require higher temperatures. Due to the introduction of lead-free alloys, the boards need more heat to get the barrels filled with solder. This not only affects the properties of the flux and components, but the operation temperatures of solder machines become higher (...)First the impact of temperature will be discussed for the separate process steps and for machine tooling. In the experimental part measurements are done to verify the accuracy that can be achieved using today's selective soldering machines. Dedicated tooling is designed to achieve special requirements with respect to component position accuracy.

Vitronics Soltec

Lead-free and Tin-lead Assembly and Reliability of Fine-pitch Wafer-Level CSPs

Technical Library | 2007-05-31 19:05:55.0

This paper discusses solder paste printing and flux dipping assembly processes for 0.4 and 0.5mm pitch lead-free WLCSPs and the corresponding assembly results and thermal cyclic reliability obtained. Variables evaluated include reflow ambient, paste type, and stencil design. Reliability is also compared to results for the same components assembled under identical conditions using SnPb solder.

Universal Instruments Corporation

SMT Under Stencil Wiper Rolls

Technical Library | 2019-06-03 21:07:34.0

The objective of this White Paper is to provide users of the above products in the electronics industry a clear understanding of the different types of stencil cleaning paper/fabrics that are currently available. Fine pitch applications are more the norm now and so the performance of stencil cleaning rolls is more critical than ever before. This White Paper will give solder paste stencil printing engineers and purchasing professionals an insight into the main products on the market, thereby enabling them to make informed decisions.

Swiftmode Malaysia (Penang) Sdn Bhd

SMT Stencil Cleaning: A Decision That Could Impact Production

Technical Library | 2021-11-16 22:17:27.0

Ultrasonics, coupled with an aqueous detergent process that cleans at below 43ºC, may be best suited for fine-pitch SMT screens and stencils. Aqueous detergents clean more effectively than solvents, with little or no environmental impact. Because of the environmental concerns driving today's technology decisions, the once simple decision of selecting a stencil cleaning process is now clouded with different chemicals, different cleaning machines and various types of solder paste, all with specific environmental, health and safety related issues and regulations.

Xerox

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

  1 2 Next

fine pitch lazer soldering searches for Companies, Equipment, Machines, Suppliers & Information