Technical Library: finite (Page 1 of 2)

Design, Development & Analysis of Vacuum Chamber of Potting Machine

Technical Library | 2021-08-11 00:57:57.0

This paper shows the Design and Finite Element analysis of vacuum chamber of potting machine designed for electronic ignition coil applications. There are two types of potting methods 1) With Vacuum 2) Without Vacuum.

D Y Patil College Of Engineering Akurdi, Pune

Reliability Enhancement of Wafer Level Packages with Nano-Column-Like Hollow Solder Ball Structures

Technical Library | 2012-01-12 22:51:19.0

In this paper, hollowed solder ball structures in wafer level packages are investigated. Detailed 3-D finite element modelling is conducted for stress and accumulated inelastic strain energy density or creep strain analysis. Three cases are studied in thi

Lamar University - Department of Mechanical Engineering

FSM Cookbook

Technical Library | 2001-04-24 10:41:53.0

Tau models describe the timing and functional information of component interfaces. Timing information specifies the delay in placing values on output signals and the timing constraints (set-up/hold, pulse-width) on input signals of a component. Functional information, through a finite state machine (FSM), specifies when output signal values change, when input signal values are latched, and how output values are determined as a function of input values.

Mentor Graphics

Numerical Study on New Pin Pull Test for Pad Cratering Of PCB

Technical Library | 2015-02-19 16:54:34.0

Pad cratering is an important failure mode besides crack of solder joint as it’ll pass the regular test but have impact on the long term reliability of the product. A new pin pull test method with solder ball attached and positioning the test board at an angle of 30º is employed to study the strength of pad cratering. This new method clearly reveals the failure mechanism. And a proper way to interpret the finite element analysis (FEA) result is discussed. Impact of pad dimension, width and angle of copper trace on the strength is included. Some findings not included in previous research could help to guide the design for better performance

Flex (Flextronics International)

Predicting the Lifetime of the PCB - From Experiment to Simulation

Technical Library | 2014-09-18 16:48:26.0

Two major drivers in electronic industry are electrical and mechanical miniaturization. Both induce major changes in the material selection as well as in the design. Nevertheless, the mechanical and thermal reliability of a Printed Circuit Board (PCB) has to remain at the same high level or even increase (e.g. multiple lead-free soldering). To achieve these reliability targets, extensive testing has to be done with bare PCB as well as assembled PCB. These tests are time consuming and cost intensive. The PCBs have to be produced, assembled, tested and finally a detailed failure analysis is required to be performed.This paper examines the development of our concept and has the potential to enable the prediction of the lifetime of the PCB using accelerated testing methods and finite element simulations.

AT&S

Influence of Plating Quality on Reliability of Microvias

Technical Library | 2016-05-12 16:29:40.0

Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue.

CALCE Center for Advanced Life Cycle Engineering

A Case Study on Evaluating Manual and Automated Heat Sink Assembly Using FEA and Testing

Technical Library | 2016-06-23 13:24:56.0

Proper assembly of components is critical in the manufacturing industry as it affects functionality and reliability. In a heat sink assembly, a detailed manual process is often utilized. However, an automated fixture is used whenever applicable.This paper will illustrate the use of strain gauge testing and Finite Element Analysis (FEA) as a simulation tool to evaluate and optimize the heat sink assembly process by manual and automated methods. Several PCBAs in the production line were subjected to the manual and automated assembly process. Strain gauge testing was performed and FEA models were built and run. Results were compared with the goal of improving the FEA model. The updated FEA model will be used in simulating different conditions in assembly. Proposed improvement solutions to some issues can also be verified through FEA.

Flex (Flextronics International)

A Life Prediction Model of Multilayered PTH Based on Fatigue Mechanism

Technical Library | 2019-12-26 19:13:52.0

Plated through hole (PTH) plays a critical role in printed circuit board (PCB) reliability. Thermal fatigue deformation of the PTH material is regarded as the primary factor affecting the lifetime of electrical devices. Numerous research efforts have focused on the failure mechanism model of PTH. However, most of the existing models were based on the one-dimensional structure hypothesis without taking the multilayered structure and external pad into consideration.In this paper, the constitutive relation of multilayered PTH is developed to establish the stress equation, and finite element analysis (FEA) is performed to locate the maximum stress and simulate the influence of the material properties. Finally, thermal cycle tests are conducted to verify the accuracy of the life prediction results. This model could be used in fatigue failure portable diagnosis and for life prediction of multilayered PCB.

Beihang University

Reflow Soldering Method With Gradient Energy Band Generated By Optical System

Technical Library | 2021-11-03 16:36:36.0

Laser reflow soldering is an important technology in electronic components processing. In this paper, we presented a simple but efficient method to achieve reflow soldering process with gradient energy band created by just two parallel mirrors. The detailed influence of the variety of optical parameters on the soldering process has been analyzed by using the finite element method. And the modulation of the optical parameters on reflow soldering parameters also has been demonstrated. In our experiment, one HR mirror and one-mirror with transmissivity of 10% have been used to create a gradient energy band with an incident laser power of 50W. In summary, both the simulations and the experiments show that the typical reflow soldering profile has been acquired by the optical system. The high quality joints on both the front and rear surface of the capacitor can be acquired by just one surface radiation of the optical system.

Huazhong University of Science and Technology

The Effects of Silver Content and Solidification Profile on the Anand Constitutive Model for SAC Lead Free Solders

Technical Library | 2023-06-14 01:09:26.0

In the electronic packaging industry, it is important to be able to make accurate predictions of board level solder joint reliability during thermal cycling exposures. The Anand viscoelastic constitutive model is often used to represent the material behavior of the solder in finite element simulations. This model is defined using nine material parameters, and the reliability prediction results are often highly sensitive to the Anand parameters. In this work, an investigation on the Anand constitutive model and its application to SAC solders of various Ag contents (i.e. SACN05, with N = 1, 2, 3, 4) has been performed. For each alloy, both water quenched (WQ) and reflowed (RF) solidification profiles were utilized to establish two unique specimen microstructures, and the same reflow profile was used for all four of the SAC alloys so that the results could be compared and the effects of Ag content could be studied systematically.

Auburn University

  1 2 Next

finite searches for Companies, Equipment, Machines, Suppliers & Information

SMTAI 2024 - SMTA International

Training online, at your facility, or at one of our worldwide training centers"
Voidless Reflow Soldering

High Throughput Reflow Oven
Win Source Online Electronic parts

High Resolution Fast Speed Industrial Cameras.
Electronic Solutions R3

Internet marketing services for manufacturing companies