Technical Library: first article insprection (Page 13 of 15)

Medical Device Manufacturing: Designing for X-ray Inspection

Technical Library | 2023-11-20 18:18:34.0

When x-ray inspection is used as part of a quality assurance program for any assembled device, steps must be taken early in the design stage to anticipate the use of x-ray inspection later in the development and production processes. This is a lesson that electronic assembly manufacturers learned years ago, and that medical device manufacturers are also discovering. There are several steps involved in learning how to interpret x-ray images, and how to design for x-ray inspection. First, manufacturers need to understand the nature of the x-ray shadow and its modalities; then they need to see how medical device developers and manufacturers are using x-ray inspection; finally, they need to consider taking measures early in the design process to ensure a clear, accurate image when the assembled device undergoes x-ray inspection.

Glenbrook Technologies

Nondestructive Inspection of Underfill Layers Stacked up in Ceramics-Organics-Ceramics Packages with Scanning Acoustic Tomography (SAT)

Technical Library | 2017-06-15 00:44:19.0

Ceramics packages are being used in the electronics industry to operate the devices in harsh environments. In this paper we report a study on acoustic imaging technology for nondestructively inspecting underfill layers connecting organic interposers sandwiched between two ceramics substrates.First, we inspected the samples with transmission mode of scanning acoustic tomography (SAT) system, an inspection routine usually employed in assembly lines because of its simpler interpretation criteria: flawed region blocks the acoustic wave and appears darker. In this multilayer sample, this approach does not offer the crucial information at which layer of underfill has flaws. To resolve this issue, we use C-Mode Scanning in reflection mode to image layer by layer utilizing ultrasound frequencies from 15MHz to 120MHz. Although the sample is thick and contains at least 5 internal material interfaces, we are able to identify defective underfill layer interfaces.

Flex (Flextronics International)

Stencil Options for Printing Solder Paste for .3 Mm CSP's and 01005 Chip Components

Technical Library | 2023-07-25 16:42:54.0

Printing solder paste for very small components like .3mm pitch CSP's and 01005 Chip Components is a challenge for the printing process when other larger components like RF shields, SMT Connectors, and large chip or resistor components are also present on the PCB. The smaller components require a stencil thickness typically of 3 mils (75u) to keep the Area Ratio greater than .55 for good paste transfer efficiency. The larger components require either more solder paste height or volume, thus a stencil thickness in the range of 4 to 5 mils (100 to 125u). This paper will explore two stencil solutions to solve this dilemma. The first is a "Two Print Stencil" option where the small component apertures are printed with a thin stencil and the larger components with a thicker stencil with relief pockets for the first print. Successful prints with Keep-Outs as small as 15 mils (400u) will be demonstrated. The second solution is a stencil technology that will provide good paste transfer efficiency for Area Ratio's below .5. In this case a thicker stencil can be utilized to print all components. Paste transfer results for several different stencil types including Laser-Cut Fine Grain stainless steel, Laser-Cut stainless steel with and w/o PTFE Teflon coating, AMTX E-FAB with and w/o PTFE coating for Area Ratios ranging from .4 up to .69.

Photo Stencil LLC

Step Stencil design when 01005 and 0.3mm pitch uBGA's coexist with RF Shields

Technical Library | 2023-07-25 16:50:02.0

Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.

Photo Stencil LLC

Dispelling the Black Magic of Solder Paste

Technical Library | 2016-01-21 16:52:27.0

Solder paste has long been viewed as "black magic". This "black magic" can easily be dispelled through a solder paste evaluation. Unfortunately, solder paste evaluation can be a challenge for electronic assemblers. Interrupting the production schedule to perform an evaluation is usually the first hurdle. Choosing the solder paste properties to test is simple, but testing for these properties can be difficult. Special equipment or materials may be required depending upon the tests that are chosen. Once the testing is complete, how does one make the decision to choose a solder paste? Is the decision based on gut feel or hard data?This paper presents a process for evaluating solder pastes using a variety of methods. These methods are quick to run and are challenging, revealing the strengths and weaknesses of solder pastes. Methods detailed in this paper include: print volume, stencil life, response to pause, open time, tack force over time, wetting, solder balling, graping, voiding, accelerated aging, and others.

FCT ASSEMBLY, INC.

Influence of Pd Thickness on Micro Void Formation of Solder Joints in ENEPIG Surface Finish

Technical Library | 2012-12-13 21:20:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. We investigated the micro-void formation of solder joints after reliability tests such as preconditioning (precon) and thermal cycle (TC) by varying the thickness of Palladium (Pd) in Electroless Nickel / Electroless Palladium / Immersion Gold (ENEPIG) surface finish. We used lead-free solder of Sn-1.2Ag-0.5Cu-Ni (LF35). We found multiple micro-voids of less than 10 µm line up within or above the intermetallic compound (IMC) layer. The number of micro-voids increased with the palladium (Pd) layer thickness. Our results revealed that the micro-void formation should be related to (Pd, Ni)Sn4 phase resulted from thick Pd layer. We propose that micro-voids may form due to either entrapping of volatile gas by (Pd, Ni)Sn4 or creeping of (Pd, Ni)Sn4.

Samsung Electro-Mechanics

Effect of Cooling Rate on the Intermetallic Layer in Solder Joints

Technical Library | 2013-02-28 17:14:36.0

While it has long been known that the Cu6Sn5 intermetallic that plays a critical role in the reliability of solder joints made with tin-containing alloys on copper substrates exists in two different crystal forms over the temperature range to which electronics circuitry is exposed during assembly and service, it has only recently been recognized that the change from one form to the other has implications for solder joint reliability. (..) In this paper the authors report a study of the effect of cooling rates on Cu6Sn5 crystals. Cooling rates from 200°C ranged from 10°C/minute to 100°C/minute and the effect of isothermal ageing at intermediate temperatures was also studied. The extent of the phase transformation after each regime was determined using synchrotron X-ray diffraction. The findings have important implications for the manufacture of solder joints and their in-service performance... First published in the 2012 IPC APEX EXPO technical conference proceedings....

Nihon Superior Co., Ltd.

Ready to Start Measuring PCB Warpage during Reflow? Why and How to Use the New IPC-9641 Standard

Technical Library | 2014-08-19 15:39:13.0

Understanding warpage of package attach locations on PCBs under reflow temperature conditions is critical in surface mount technology. A new industry standard, IPC 9641, addresses this topic directly for the first time as an international standard.This paper begins by summarizing the sections of the IPC 9641 standard, including, measurement equipment selection, test setup and methodology, and accuracy verification. The paper goes further to discuss practical implementation of the IPC 9641 standards. Key advantages and disadvantages between available warpage measurement methods are highlighted. Choosing the correct measurement technique depends on requirements for warpage resolution, data density, measurement volume, and data correlation. From industry experience, best practice recommendations are made on warpage management of PCB land areas, covering how to setup, run, analyze, and report on local area PCB warpage.The release of IPC 9641 shows that flatness over temperature of the package land area on the PCB is critical to the SMT industry. Furthermore, compatibility of shapes between attaching surfaces in SMT, like a package and PCB, will be critical to product yield and quality in years to come.

Akrometrix

Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene

Technical Library | 2015-03-19 20:33:34.0

Silicon is arguably the best electronic material, but it is not a good optoelectronic material. By employing first-principles calculations and the cluster-expansion approach, we discover that hydrogenated bilayer silicene (BS) shows promising potential as a new kind of optoelectronic material. Most significantly, hydrogenation converts the intrinsic BS, a strongly indirect semiconductor, into a direct-gap semiconductor with a widely tunable band gap. At low hydrogen concentrations, four ground states of single- and double sided hydrogenated BS are characterized by dipole-allowed direct (or quasidirect) band gaps in the desirable range from 1 to 1.5 eV, suitable for solar applications. At high hydrogen concentrations, three well-ordered double-sided hydrogenated BS structures exhibit direct (or quasidirect) band gaps in the color range of red, green, and blue, affording white light-emitting diodes. Our findings open opportunities to search for new silicon-based light-absorption and light-emitting materials for earth-abundant, high efficiency, optoelectronic applications.Originally published by the American Physical Society

Oak Ridge National Laboratory

Study on Solder Joint Reliability of Fine Pitch CSP

Technical Library | 2015-12-31 15:19:28.0

Today's consumer electronic product are characterized by miniatuization, portability and light weight with high performance, especially for 3G mobile products. In the future more fine pitch CSPs (0.4mm) component will be required. However, the product reliability has been a big challenge with the fine pitch CSP. Firstly, the fine pitch CSPs are with smaller solder balls of 0.25mm diameter or even smaller. The small solder ball and pad size do weaken the solder connection and the adhesion of the pad and substrate, thus the pad will peel off easily from the PCB substrate. In addition, miniature solder joint reduce the strength during mechanical vibration, thermal shock, fatigue failure, etc. Secondly, applying sufficient solder paste evenly on the small pad of the CSP is difficult because stencil opening is only 0.25mm or less. This issue can be solved using the high end type of stencil such as Electroforming which will increase the cost.

Flex (Flextronics International)


first article insprection searches for Companies, Equipment, Machines, Suppliers & Information

Thermal Interface Material Dispensing

Stencil Printing 101 Training Course
pressure curing ovens

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications
design with ease with Win Source obselete parts and supplies

Training online, at your facility, or at one of our worldwide training centers"