Technical Library | 2023-12-15 03:06:24.0
The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.
Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2018-07-18 16:28:26.0
Reduction of first pass defects in the SMT assembly process minimizes cost, assembly time and improves reliability. These three areas, cost, delivery and reliability determine manufacturing yields and are key in maintaining a successful and profitable assembly process. It is commonly accepted that the solder paste printing process causes the highest percentage of yield challenges in the SMT assembly process. As form factor continues to get smaller, the challenge to obtain 100% yield becomes more difficult.This paper will identify defects affecting SMT yields in the printing process and discuss their Root Cause. Outer layer copper weight and surface treatment will also be addressed as to their effect on printability. Experiments using leadless and emerging components will be studied and root cause analysis will be presented
Technical Library | 2010-03-04 18:11:53.0
While the electronics manufacturing industry has been occupied with the challenge of RoHS compliance and with it, Pb-free soldering, established trends of increasing functionality and miniaturization have continued. The increasing use of ultra-fine pitch and area-array devices presents challenges in both printing and flux technology. With the decrease in both the size and the pitch of said components, new problems may arise, such as head-in-pillow and graping defects
Technical Library | 1999-04-15 06:56:07.0
Solder paste is a seemingly simple material that forms one of the foundations of the surface mount assembly operation. If the solder paste does not do its job correctly then first pass yield will be severely reduced.
Technical Library | 2021-12-16 01:52:32.0
Package on Packages (PoP) find use in applications that require high performance with increased memory density. One of the greatest benefits of PoP technology is the elimination of the expensive and challenging task of routing high-speed memory lines from under the processor chip out to memory chip in separate packages. Instead, the memory sits on top of the processor and the connections are automatically made during assembly. For this reason PoP technology has gained wide acceptance in cell phones and other mobile applications. PoP technology can be assembled using one-pass and two-pass assembly processes. In the one-pass technique the processor is first mounted to the board, the memory is mounted to the processor and the finished board is then run through the reflow oven in a single pass. The two-pass technique has an intermediate step in which the memory is first mounted onto the processor.
Technical Library | 2015-04-03 20:02:31.0
Understanding your process and how to minimize defects has always been important. Nowadays, its importance is increasing with the complexity of products and the customers demand for higher quality. Quality Management Solutions (QMS) that integrate real-time test and inspection results with engineering and production data, can allow the optimization of the entire manufacturing process. We will describe the cost and time benefits of a QMS system when integrated with engineering data and manufacturing processes. We will use real examples that can be derived from integrating this data. This paper also discusses the aspects of Quality Management Software that enables electronic manufacturers to efficiently deliver products while achieving higher quality, reduce manufacturing costs and cutting repair time. Key words: Quality Management Software, ICT, Repair workstations, First Pass Yield, Pareto analysis, Flying Probe, QMS.
Technical Library | 2013-07-25 14:02:15.0
Bottom-termination components (BTC), such as QFNs, are becoming more common in PCB assemblies. These components are characterized by hidden solder joints. How are defects on hidden DFN joints detected? Certainly, insufficient solder joints on BTCs cannot be detected by manual visual inspection. Nor can this type of defect be detected by automated optical inspection; the joint is hidden by the component body. Defects such as insufficients are often referred to as "marginal" defects because there is likely enough solder present to make contact between the termination on the bottom-side of the component and the board pad for the component to pass in-circuit and functional test. Should the board be subjected to shock or vibration, however, there is a good chance this solder connection will fracture, leading to an open connection.
Technical Library | 2020-07-02 13:29:37.0
Industry standards such as J-STD-005 and JIS Z 3284-1994 call for the use of viscosity measurement(s) as a quality assurance test method for solder paste. Almost all solder paste produced and sold use a viscosity range at a single shear rate as part of the pass-fail criteria for shipment and customer acceptance respectively. As had been reported many times, an estimated 80% of the defects associated with the surface mount technology process involve defects created during the printing process. Viscosity at a single shear rate could predict a fatal flaw in the printability of a solder paste sample. However, false positive single shear rate viscosity readings are not unknown.
Technical Library | 2013-08-08 15:23:11.0
In this project Machine Vision PCB Inspection System is applied at the first step of manufacturing, i.e., the making of bare PCB. We first compare a PCB standard image with a PCB image, using a simple subtraction algorithm that can highlight the main problem-regions. We have also seen the effect of noise in a PCB image that at what level this method is suitable to detect the faulty image. Our focus is to detect defects on printed circuit boards & to see the effect of noise. Typical defects that can be detected are over etchings (opens), under-etchings (shorts), holes etc...