Technical Library | 2023-12-01 11:08:12.0
Choosing the Right Model I.C.T SMT Coating Machine In the realm of SMT Coating Machine, I.C.T offers an extensive array of advanced models tailored to diverse production needs. The choice of the right machine significantly influences the efficiency and precision of your conformal coating process. This article will provide an in-depth exploration of I.C.T's PCB conformal coating spray machine models, specifically the I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650, assisting you in making an informed decision aligned with your specific requirements. I.C.T PCB Conformal Coating Spray Machines Overview I.C.T, renowned for its commitment to innovation, quality, and safety, ensures all models hold CE certification. Let's delve into the key distinctions between these models and the essential factors to consider when selecting the ideal machine for your needs. I.C.T-T550: Precision in Simplicity The I.C.T-T550 SMT Coating Machine model features two critical valves: the atomization valve and the precision valve. If you're interested in exploring a variety of coating valves, simply click here for more information. Ideal for applications where fixed valves suffice, the I.C.T-T550, lacking rotation or tilting capabilities, ensures consistent and reliable results for straightforward conformal coating requirements. I.C.T-T550U: Unleash Flexibility For those requiring more versatility, the I.C.T-T550U SMT Coating Machine model is designed to meet your needs. The addition of a rotating U-axis empowers the valves to rotate a full 360 degrees and tilt up to 35 degrees, enabling precise coating in challenging, intricate areas. The I.C.T-T550U's flexibility makes it an excellent choice for a wide range of applications. I.C.T-T600: Doubling Efficiency Closely resembling the I.C.T-T550 SMT Coating Machine, the I.C.T-T600 boasts a unique feature – equipped with two atomization valves. This dual-valve setup enables simultaneous coating of two PCBs, effectively doubling production efficiency. Ideal for applications prioritizing speed and efficiency, the I.C.T-T600 SMT Coating Machine streamlines the coating process. I.C.T-T650: Versatility Redefined In cases requiring different valves for comprehensive coating, the I.C.T-T650 SMT Coating Machine is the solution. This model features two atomization valves and two precision valves, offering exceptional flexibility for diverse conformal coating applications. The I.C.T-T650 SMT Coating Machine ensures precise and reliable results for even the most complex coating needs. Conclusion: PCB Conformal Coating Spray Machines Selecting the right I.C.T PCB conformal coating spray machine is crucial for enhancing the efficiency and effectiveness of your production process. Consider factors such as the size, complexity, and coating requirements of your PCBAs. Rest assured, I.C.T's unwavering commitment to innovation, quality, and safety guarantees the perfect solution to elevate your conformal coating endeavors. If you need further guidance or wish to tap into the expertise of I.C.T professional engineers for designing a customized coating production line, do not hesitate to reach out. We are here to help you achieve optimal results while meeting European safety standards. If uncertain about whether your product requires a PCB dispensing machine or coating machine, feel free to reach out directly or click here to read our comprehensive guide for further insights: Differences Between Coating & Dispensing.
Technical Library | 2022-10-31 09:12:57.0
Type: Filter Cup Model: Siemens Placement Machine Certification: CE,ROHS Trademark: Siemens Brief Description: Feeder Fixing Screws Wight: 1kg High Light: 00343010-01 SMT Spare Parts, ROHS SMT Spare Parts, SIEMENS PL EA MCH Filter
Technical Library | 2020-08-05 18:41:32.0
With the first 5G NR standard recently approved by the 3GPP at the end of 2017, many companies are racing to design 5G radio products that will demand wider bandwidths, higher frequencies, enhanced carrier aggregation and support of massive MIMO. AT&T and Samsung plan to launch 5G mobile services and Verizon plans to launch 5G Fixed Wireless Access in the US this year while South Korea will be demonstrating 5G at the upcoming Winter Olympics.
Technical Library | 2013-12-11 23:24:32.0
Today's analyses of electronics reliability at the system level typically use a "black box approach", with relatively poor understanding of the behaviors and performances of such "black boxes" and how they physically and electrically interact (...) The incorporation of more rigorous and more informative approaches and techniques needs to better understand (...) Understanding the Physics of Failure (PoF) is imperative. It is a formalized and structured approach to Failure Analysis/Forensics Engineering that focuses on total learning and not only fixing a particular current problem (...) In this paper we will present an explanation of various physical models that could be deployed through this method, namely, wire bond failures; thermo-mechanical fatigue; and vibration.
Technical Library | 2015-04-03 20:02:31.0
Understanding your process and how to minimize defects has always been important. Nowadays, its importance is increasing with the complexity of products and the customers demand for higher quality. Quality Management Solutions (QMS) that integrate real-time test and inspection results with engineering and production data, can allow the optimization of the entire manufacturing process. We will describe the cost and time benefits of a QMS system when integrated with engineering data and manufacturing processes. We will use real examples that can be derived from integrating this data. This paper also discusses the aspects of Quality Management Software that enables electronic manufacturers to efficiently deliver products while achieving higher quality, reduce manufacturing costs and cutting repair time. Key words: Quality Management Software, ICT, Repair workstations, First Pass Yield, Pareto analysis, Flying Probe, QMS.
Technical Library | 2014-04-03 18:01:13.0
A system level modeling methodology is presented and validated on a simple case. It allows precise simulations of electrostatic discharge (ESD) stress propagation on a printed circuit board (PCB). The proposed model includes the integrated circuit (IC) ESD protection network, IC package, PCB lines, passives components, and externals elements. The impact of an external component on the ESD propagation paths into an IC is demonstrated. Resulting current and voltage waveforms are analyzed to highlight the interactions between all the elements of an operating PCB. A precise measurement technique was designed and used to compare with the simulation results. The model proposed in this paper is able to predict, with good accuracy, the propagation of currents and voltages into the whole system during ESD stress. It might be used to understand why failures occur and how to fix them with the most suitable solution.
Technical Library | 2019-01-20 22:47:35.0
With the rapid development of the electronics industry, more and more components such as integrated circuits and connectors, relays, power modules, etc. need to be packaged with IC tubes. The anti static ic tubes is actually a kind of pvc plastic(reference to : What are the materials for IC tubes) profile, the size varies with the shape of the installed product, the precision requirement is high, the wall thickness should be controlled within ±0.1mm, and the surface is required to have no impurity spots, smooth and transparent. The IC packaging tubes produced by Sewate Technology Co., Ltd. are extruded. The typical process flow is: extrusion, vacuum adsorption setting, traction, fixed length cutting and directional discharge, deburring, immersion antistatic liquid, drying, testing, packaging and storage
Technical Library | 2019-05-02 13:47:39.0
Automating electronics assembly is complex because many devices are not manufactured on a scale that justifies the cost of setting up robotic systems, which need frequent readjustments as models change. Moreover, robots are only appropriate for a limited part of assembly because small, intricate devices are particularly difficult for them to assemble. Therefore, assembly line designers must minimize operational and readjustment costs by determining the optimal assignment of tasks and resources for workstations. Several research studies address task assignment issues, most of them dealing with robot costs as fixed amount, ignoring operational costs. In real factories, the cost of human resources is constant, whereas robot costs increase with uptime. Thus, human workload must be as large and robot workload as small as possible for the given number of humans and robots. We propose a new task assignment method that establishes a workload balancing that meet precedence and further constraints.
Technical Library | 2014-10-30 01:48:43.0
The ultimate life of a microelectronics component is often limited by failure of a solder joint due to crack growth through the laminate under a contact pad (cratering), through the intermetallic bond to the pad, or through the solder itself. Whatever the failure mode proper assessments or even relative comparisons of life in service are not possible based on accelerated testing with fixed amplitudes, or random vibration testing, alone. Effects of thermal cycling enhanced precipitate coarsening on the deformation properties can be accounted for by microstructurally adaptive constitutive relations, but separate effects on the rate of recrystallization lead to a break-down in common damage accumulation laws such as Miner's rule. Isothermal cycling of individual solder joints revealed additional effects of amplitude variations on the deformation properties that cannot currently be accounted for directly. We propose a practical modification to Miner's rule for solder failure to circumvent this problem. Testing of individual solder pads, eliminating effects of the solder properties, still showed variations in cycling amplitude to systematically reduce subsequent acceleration factors for solder pad cratering. General trends, anticipated consequences and remaining research needs are discussed
Technical Library | 2019-04-11 06:04:49.0
With the development of science and technology, the climatic chamber quality has been improved, and the failure rate is reduced, but there still have the failure probability.today we introduce what are the mian factors for big noise high low temperature test chamber: 1.External factors: the bottom angle is uneven, the ground is uneven, adjust the bottom angle, ensure the equipment is in a horizontal position; 2.The equipment is touched other objects or pushed against the wall,pls remove the objects and keep a certain distance from the wall. 3.Compressor noise:check whether the compressor collides with the pipeline,and evaporator dish is loose or not. 4.Check whether compressor shock absorbers are aging and replace them. 5.Solenoid valve noise: solenoid valve reversing caue loud sound, pls add damping glue, if no effect, need to replace solenoid valve. If there is AC noise, need to replace the power board. 6.Check wether the fan or the fan string shaft make noise,whether the fan blades are touched and deformed, whether the fan is fixed or not, pls adjust accordingly or add the rubber pad. If further technical questions,contact us without hesitation!---Climtest Symor® technical team