Technical Library: flexjet 3 head (Page 1 of 1)

The X-Factor - How X-ray Technology is Improving the Electronics Assembly Industry

Technical Library | 2023-11-20 17:30:11.0

Summary for today 1. Electronic component inspection and failure analysis. 2. Component counting and material management. 3. Reverse engineering. 4. Counterfeit detection. 5. Real-time defect verification. 6. Computed tomography (CT) techniques and how to differentiate between 2D, 2.5D, and 3D x-ray inspection. 7. Design for manufacturing (DFM) and design for x-ray inspection (DFXI). 8. Voids, bridging, and head-in-pillow failures in bottom terminated components (BTC). 9. Artificial Intelligence and x-ray inspection

Creative Electron Inc

An investigation into low temperature tin-bismuth and tin-bismuth-silver lead-free alloy solder pastes for electronics manufacturing applications

Technical Library | 2013-01-24 19:16:35.0

The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.

Christopher Associates Inc.

Advanced Second Level Assembly Analysis Techniques - Troubleshooting Head-In-Pillow, Opens, and Shorts with Dual Full-Field 3D Surface Warpage Data Sets/

Technical Library | 2014-08-19 16:04:28.0

SMT assembly planning and failure analysis of surface mount assembly defects often include component warpage evaluation. Coplanarity values of Integrated Circuit packages have traditionally been used to establish pass/fail limits. As surface mount components become smaller, with denser interconnect arrays, and processes such package-on-package assembly become prevalent, advanced methods using dual surface full-field data become critical for effective Assembly Planning, Quality Assurance, and Failure Analysis. A more complete approach than just measuring the coplanarity of the package is needed. Analyzing the gap between two surfaces that are constantly changing during the reflow thermal cycle is required, to effectively address the challenges of modern SMT assembly.

Akrometrix

  1  

flexjet 3 head searches for Companies, Equipment, Machines, Suppliers & Information