Technical Library | 2018-11-14 21:43:14.0
Status of flip chip technology such as wafer bumping, package substrate, flip chip assembly, and underfill will be reviewed in this study. Emphasis is placed on the latest developments of these areas in the past few years. Their future trends will also be recommended. Finally, the competition on flip chip technology will be briefly mentioned.
Technical Library | 2006-11-14 12:48:31.0
Content: 1. Bridge from Commercial Reliability 2. Existing PBGA use in Aerospace & Military 3. Drivers: Plastic versus Ceramic Package Weight 4. Attributes of PTFE and Thin Core FC Packages 5. Flip Chip Package Reliability 6. Flip Chip Package
Technical Library | 2013-03-14 17:19:28.0
Commercial-off-the-shelf ball/column grid array packaging (COTS BGA/CGA) technologies in high reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronic packages. This talk briefly discusses an overview of packaging trends for area array packages from wire bond to flip-chip ball grid array (FCBGA) as well as column grid array (CGA). It then presents test data including manufacturing and assembly board-level reliability for FCBGA packages with 1704 I/Os and 1-mm pitch, fine pitch BGA (FPBGA) with 432 I/Os and 0.4-mm pitch, and PBGA with 676 I/Os and 1.0-mm pitch packages. First published in the 2012 IPC APEX EXPO technical conference proceedings.
Technical Library | 2014-12-11 18:00:09.0
The growth of portable and wireless products is driving the miniaturization of packages resulting in the development of many types of thin form factor packages and cost effective assembly processes. Wire bonded packages using conventional copper lead frame have been used in industry for quite some time. However, the demand for consumer electronics is driving the need for flip chip interconnects as these packages shorten the signals, reduce inductance and improve functionality as compared to the wire bonded packages. The flip chip packages have solder bumps as interconnects instead of wire bonds and typically use an interposer or organic substrate instead of a metal lead frame (...) The paper provides a general overview of typical defects and failure modes seen in package assembly and reviews the efforts needed to understand new failure modes during package assembly. The root cause evaluations and lessons learned as the factory transitioned to thin form factor packages are shared
Technical Library | 2007-06-27 15:43:06.0
Traditionally most flip chips were designed with large bumps on a coarse pitch. However, as the trend towards smaller, more compact assemblies continues the sizes of semiconductor packages are forced to stay in line. New designs are incorporating smaller bump diameters on increasingly aggressive pitches, and in many cases decreasing the total IO count. With fewer and smaller bumps to distribute the load of the placement force it is becoming increasingly vital for equipment manufacturers to meet the challenge in offering low force placement solutions. One such solution will be presented in the following discussion. Also presented will be ways to minimize the initial impact spike that flip chips experience upon placement.
Technical Library | 2008-02-26 15:02:19.0
More and more chip packages need multi-GHz RF structures to meet their performance targets. The ideal chip package needs to combine RF features with Digital features for these applications. They drive low-loss, controlled impedance transmission lines, flexibility in assigned signal and power layers, and clearances of various shapes in power layers. Building these features in a chip package is difficult without making the stack-up very thick or compromising the reliability of the product. In the present paper, we have designed and built a flip-chip package test vehicle (TV) to make new RF structures, using Z-axis interconnection (Zinterconnect) building blocks.
Technical Library | 2014-06-19 18:13:23.0
For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...
Technical Library | 2021-01-03 19:24:52.0
Reflow soldering is the primary method for interconnecting surface mount technology (SMT) applications. Successful implementation of this process depends on whether a low defect rate can be achieved. In general, defects often can be attributed to causes rooted in all three aspects, including materials, processes, and designs. Troubleshooting of reflow soldering requires identification and elimination of root causes. Where correcting these causes may be beyond the reach of manufacturers, further optimizing the other relevant factors becomes the next best option in order to minimize the defect rate.
Technical Library | 2014-05-29 13:48:14.0
Electronics packaging based on stress-engineered spring interconnects has the potential to enable integrated IC testing, fine pitch, and compliance not readily available with other technologies. We describe new spring contacts which simultaneously achieve low resistance ( 30 μm) in dense 2-D arrays (180 ~ 180-µm pitch). Mechanical characterization shows that individual springs operate at approximately 150-µN force. Electrical measurements and simulations imply that the interface contact resistance contribution to a single contact resistance is This paper suggests that integrated testing and packaging can be performed with the springs, enabling new capabilities for markets such as multichip modules.
Technical Library | 2023-11-20 18:49:11.0
Non-destructive testing during the manufacture of printed wiring boards (PWBs) has become ever more important for checking product quality without compromising productivity. Using x-ray inspection, not only provides a non-destructive test but also allows investigation within optically hidden areas, such as the quality of post solder reflow of area array devices (e.g. BGAs, CSPs and flip chips). As the size of components continues to diminish, today's x-ray inspection systems must provide increased magnification, as well as better quality x-ray images to provide the necessary analytical information. This has led to a number of x-ray manufacturers offering digital x-ray inspection systems, either as standard or as an option, to satisfy these needs. This paper will review the capabilities that these digital x-ray systems offer compared to their analogue counterparts. There is also a discussion of the various types of digital x-ray systems that are available and how the use of different digital detectors influences the operational capabilities that such systems provide.