Technical Library: flip-chip (Page 1 of 4)

Underfill Materials Dispensing in Electronics Manufacturing Applications

Technical Library | 2024-08-20 00:40:08.0

In electronics manufacturing, 'Underfill' refers to a material that is applied to fill the gap between a semiconductor device, such as flip-chip assemblies, Ball Grid Arrays (BGA), or Chip Scale Packages (CSP), and the substrate, such as a PCB or flex circuit.

GPD Global

Status and Outlooks of Flip Chip Technology

Technical Library | 2018-11-14 21:43:14.0

Status of flip chip technology such as wafer bumping, package substrate, flip chip assembly, and underfill will be reviewed in this study. Emphasis is placed on the latest developments of these areas in the past few years. Their future trends will also be recommended. Finally, the competition on flip chip technology will be briefly mentioned.

ASM Pacific Technology

Organic Flip Chip Packages for Use in Military and Aerospace Applications

Technical Library | 2006-11-14 12:48:31.0

Content: 1. Bridge from Commercial Reliability 2. Existing PBGA use in Aerospace & Military 3. Drivers: Plastic versus Ceramic Package Weight 4. Attributes of PTFE and Thin Core FC Packages 5. Flip Chip Package Reliability 6. Flip Chip Package

i3 Electronics

Dummy Components Part Numbering System

Technical Library | 2000-11-13 20:45:03.0

Free 16 page guide quickly explains how to read Dummy Component and test vehicle part numbers. Covers CSP, BGA, QFP, SOIC, Flip Chips, flat packs and discretes and chips.

TopLine Dummy Components

Method for Automated Nondestructive Analysis of Flip Chip Underfill

Technical Library | 2008-11-06 02:17:59.0

For many years Acoustic Micro Imaging (AMI) techniques have been utilized to evaluate the quality of the underfill used to support the solder bump interconnections of Flip Chip type devices. AMI has been established as one of the few techniques that can provide reliability and quality control data, but little has been done to automate the evaluation process for Flip Chip underfill until now.

Sonoscan, Inc.

Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints

Technical Library | 2014-06-19 18:13:23.0

For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...

National Chiao Tung University

Optimizing Flip Chip Substrate Layout for Assembly

Technical Library | 2007-11-29 17:20:31.0

Programs have been developed to predict the expected yield of flip chip assemblies, based on substrate design and the statistics of actual manufactured boards, as well as placement machine accuracy, variations in bump sizes, and possible substrate warpage. These predictions and the trends they reveal can be used to direct changes in design so that defect levels will fall below the acceptable limits. Shapes of joints are calculated analytically, or when this is not possible, numerically by means of a public domain program called Surface Evolver. The method is illustrated with an example involving the substrate for a flip chip BGA.

Universal Instruments Corporation

Low Force Placement Solution For Delicate and Low IO Flip Chip Assemblies

Technical Library | 2007-06-27 15:43:06.0

Traditionally most flip chips were designed with large bumps on a coarse pitch. However, as the trend towards smaller, more compact assemblies continues the sizes of semiconductor packages are forced to stay in line. New designs are incorporating smaller bump diameters on increasingly aggressive pitches, and in many cases decreasing the total IO count. With fewer and smaller bumps to distribute the load of the placement force it is becoming increasingly vital for equipment manufacturers to meet the challenge in offering low force placement solutions. One such solution will be presented in the following discussion. Also presented will be ways to minimize the initial impact spike that flip chips experience upon placement.

Universal Instruments Corporation

A Novel High Thermal Conductive Underfill For Flip Chip Appliation

Technical Library | 2014-02-27 15:30:20.0

Silicon dioxide is normally used as filler in underfill. The thermal conductivity of underfill is less than 1 w/mk, which is not able to meet the current flip chip application requirements such as 3D stacked multi-chips packaging. No matter which direction the heat will be dissipated through PCB or chip, the heat has to pass through the underfill in 3D stacked chips. Therefore the increase of thermal conductivity of underfill can significantly enhance the reliability of electronic devices, particularly in 3D package devices

YINCAE Advanced Materials, LLC.

Joule Heating Effects on the Current Carrying Capacity of an Organic Substrate for Flip-Chip Applications

Technical Library | 2009-07-22 18:33:41.0

This paper deals with the thermal effects of joule heating in a high interconnect density, thin core, buildup, organic flip chip substrate. The 440 μm thick substrate consists of a 135 μm thick core with via density of about 200 μm. The typical feature sizes in the substrate are 50 micron diameter vias is the core/buildup layers and 12 micron thick metal planes. An experimental test vehicle is powered with current and the temperature rise was measured. A numerical model was used to simulate the temperature rise in the TV.

i3 Electronics

  1 2 3 4 Next

flip-chip searches for Companies, Equipment, Machines, Suppliers & Information

Thermal Interface Material Dispensing

Training online, at your facility, or at one of our worldwide training centers"
best pcb reflow oven

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
High Throughput Reflow Oven

Component Placement 101 Training Course


Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.