Technical Library | 2018-05-09 22:15:29.0
Creep corrosion on printed circuit boards (PCBs) is the corrosion of copper metallization and the spreading of the copper corrosion products across the PCB surfaces to the extent that they may electrically short circuit neighboring features on the PCB. The iNEMI technical subcommittee on creep corrosion has developed a flowers-of-sulfur (FOS) based test that is sufficiently well developed for consideration as an industry standard qualification test for creep corrosion. This paper will address the important question of how relative humidity affects creep corrosion. A creep corrosion tendency that is inversely proportional to relative humidity may allow data center administrators to eliminate creep corrosion simply by controlling the relative humidity in the data center,thus, avoiding the high cost of gas-phase filtration of gaseous contamination. The creep corrosion relative humidity dependence will be studied using a modified version of the iNEMI FOS test chamber. The design modification allows the achievement of relative humidity as low as 15% in the presence of the chlorine-releasing bleach aqueous solution. The paper will report on the dependence of creep corrosion on humidity in the 15 to 80% relative humidity range by testing ENIG (gold on electroless nickel), ImAg (immersion silver) and OSP (organic surface preservative) finished PCBs, soldered with organic acid flux.
Technical Library | 2015-07-16 17:24:23.0
Qualification of electronic hardware from a corrosion resistance standpoint has traditionally relied on stressing the hardware in a variety of environments. Before the development of tests based on mixed flowing gas (MFG), hardware was typically exposed to temperature-humidity cycling. In the pre-1980s era, component feature sizes were relatively large. Corrosion, while it did occur, did not in general degrade reliability. There were rare instances of the data center environments releasing corrosive gases and corroding hardware. One that got a lot of publicity was the corrosion by sulfur-bearing gases given off by data center carpeting. More often, corrosion was due to corrosive flux residues left on as-manufactured printed circuit boards (PCBs) that led to ion migration induced electrical shorting. Ion migration induced failures also occurred inside the PCBs due to poor laminate quality and moisture trapped in the laminate layers.
Technical Library | 2022-03-16 19:48:18.0
Dendrites, Electrochemical Migration (ECM) and parasitic leakage, are usually caused by process related contamination. For example, excess flux, poor handling, extraneous solder, fibers, to name a few. One does not normally relate these fails with environmental causes. However, creep corrosion is a mechanism by which electronic products fail in application, primarily related to sulfur pollution present in the air.1 The sulfur reacts with exposed silver, and to a lesser extent, exposed copper. This paper will explore various aspects of the creep corrosion chemical reaction
Technical Library | 2013-04-11 15:43:17.0
With the explosion of growth in handheld electronics devices, manufacturers have been forced to look for ways to reinforce their assemblies against the inevitable bumps and drops that their products experience in the field. One method of reinforcement has been the utilization of underfills to "glue" certain SMDs to the PCB. Bumped SMDs attached to the PCB with a no-clean soldering process offer the unavoidable scenario of the underfill coming in contact with a flux residue. This may or may not create a reliability issue... First published in the 2012 IPC APEX EXPO technical conference proceedings
Technical Library | 2020-11-24 23:01:04.0
The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.
Technical Library | 2016-12-29 15:37:51.0
The reliabilities of the flux residue of electronic assemblies and semiconductor packages are attracting more and more attention with the adoption of no-clean fluxes by majority of the industry. In recent years, the concern of "partially activated" flux residue and their influence on reliability have been significantly raised due to the miniaturization along with high density design trend, selective soldering process adoption, and the expanded use of pallets in wave soldering process. When flux residue becomes trapped under low stand-off devices, pallets or unsoldered areas (e.g. selective process), it may contain unevaporated solvent, "live" activators and metal complex intermediates with different chemical composition and concentration levels depending on the thermal profiles. These partially-activated residues can directly impact the corrosion, surface insulation and electrochemical migration of the final assembly. In this study, a few application tests were developed internally to understand this issue. Two traditional liquid flux and two newly developed fluxes were selected to build up the basic models. The preliminary results also provide a scientific approach to design highly reliable products with the goal to minimize the reliability risk for the complex PCB designs and assembly processes. This paper was originally published by SMTA in the Proceedings of SMTA International
Technical Library | 2023-01-10 20:15:42.0
Over the past years there has been consistent growth in the use of electroless nickel / immersion gold (ENIG) as a final finish. The finish is now frequently being used for PBGA, CSP, QFP and COB and more recently gathered considerable interest as a low cost under-bump metallization for flip chip bumping application. One of the largest users for this finish has been the telecommunication industry, were millions of square meters of PCBs with ENIG have been successfully used. The nickel layer offers advantages such as multiple soldering cycles and hand reworks without copper dissolution being a factor. The nickel also acts as a reinforcement to improve through-hole and blind micro via thermal integrity. In addition the nickel layer offers advantages such as co-planarity, Al-wire bondability and the use as contact surface for keypads or contact switching. Especially those pads, which are not covered by solder need a protective coating in corrosive environment – such as high humidity or pollutant gas.
Technical Library | 2016-11-10 17:37:35.0
The demand for compute capability is growing rapidly fueling the ever rising consumption of power by data centers the worldwide. This growth in power consumption presents a challenge to data center total cost of ownership. Free-air cooling is one of the industrial trends in reducing power consumption, the power usage effectiveness (PUE) ratio, and the total cost of ownership (TCO). Free-air cooling is a viable approach in many parts of the world where the air is reasonably clean. In Eastern China, the poor quality of air, high in particle and gaseous contamination, is a major obstacle to free-air cooling. Servers exposed to outside air blowing in to data centers will corrode and fail at high rate. The poor reliability of hardware increase TCO dramatically. This paper describes a corrosion resistant server design suitable for reliable operation in a free-air cooling data center located in Eastern China where the indoor air quality can be as poor as ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) severity level G3. An accelerated corrosion test method of verifying hardware reliability in the ASHRAE severity level G3 environment is also described.
Technical Library | 2013-04-18 16:46:42.0
Conformal coatings are considered a method of providing corrosion protection to electrical assemblies used in high-humidity or harsh environments. They are applied to PCBs for various reasons: to protect from moisture and contamination, to minimize dendritic growth, to provide stress relief, and for insulation resistance. These contribute to more durable handling, enhanced device reliability, and reduced warranty costs. Increased miniaturization of new circuit board designs requires flexible, low stress coating material to protect delicate components and fine-pitch leads. Silicone conformal coatings offer many advantages that address the general trend of ongoing PCBs designs, such as: high flexibility and low modulus to reduce stress on delicate or small components... First published in the 2012 IPC APEX EXPO technical conference proceedings.
Technical Library | 2017-07-27 16:51:57.0
Reliability Expectations of Highly Dense Electronic Assemblies is commonly validated using Ion Chromatography and Surface Insulation Resistance. Surface Insulation Resistance tests resistance drops on both cleaned and non-cleaned circuit assemblies. It is well documented in the literature that SIR detects ionic residue and the potential of this residue to cause leakage currents in the presence of humidity and bias. Residues under leadless components are hard to inspect for and to ensure flux residue is totally removed. The question many assemblers consider is the risk of residues that may still be present under the body of components.