Technical Library: flux identifier kit (Page 1 of 1)

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Model for Improvement of Fluxing Process on Selective Soldering Machines

Technical Library | 2017-05-25 17:07:39.0

Purpose of this research is to identify the factors that directly influence the effectiveness of the fluxing process in selective soldering machines, using the design of experiment methodology with associated factors and levels used in the experiment. Final findings gives directions for set up of the optimal fluxing parameters that will enable appropriate flux appliance and to gain reduction of soldering quality issues which foundations are from this process.

Visteon Electronics

VOC-Free Wave Solder Flux Evaluation

Technical Library | 1999-04-26 15:51:30.0

The goal of the flux evaluation was to identify one product that would meet the needs of all SICN's wave solder products and processes while producing high quality assemblies. At the outset of the evaluation, it was unclear whether a single flux chemistry could satisfy such a broad range of demands, particularly because SICN's utilization of less aggressive, low-impact chemicals.

Siemens Process Industries and Drives

Fine Tuning The Stencil Manufacturing Process and Other Stencil Printing Experiments

Technical Library | 2013-11-21 12:01:11.0

Previous experimentation on a highly miniaturized and densely populated SMT assembly revealed the optimum stencil alloy and flux-repellent coating for its stencil printing process. Production implementation of the materials that were identified in the study resulted in approximately 5% print yield improvement across all assemblies throughout the operation, validating the results of the initial tests. A new set of studies was launched to focus on the materials themselves, with the purpose of optimizing their performance on the assembly line (...) Results of the prior tests are reviewed, and the new test vehicle, experimental setup and results are presented and discussed.

Shea Engineering Services

Contamination Profile of Printed Circuit Board Assemblies in Relation to Soldering Types and Conformal Coating

Technical Library | 2017-12-11 22:31:06.0

Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode setup. Localized extraction of residue was carried out using a commercial C3 extraction system. Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.

Technical University of Denmark

Aluminum Soldering - Product Guide

Technical Library | 2020-07-29 20:12:52.0

Aluminum is a metal that it is hard to solder due to the high surface tension difference between it and molten solder alloy. This occurs because aluminum rapidly forms a tenacious oxide layer whenever it is exposed to oxygen in the air. The oxide layer is responsible for the high surface tension difference between the aluminum and the solder and impedes the solder from spreading evenly on an aluminum surface. There are hundreds of aluminum alloys available in the marketplace; it is important to identify the form of aluminum that is being soldered. Once this is done, an appropriate soldering technique can be chosen for soldering the specific aluminum alloy under consideration. Direct aluminum soldering eliminates using expensive plating techniques to prepare the aluminum surface for soldering.

Superior Flux & Mfg. Co.

Conductive Anodic Filament Failure: A Materials Perspective

Technical Library | 2023-03-16 18:51:43.0

Conductive anodic filament (CAF) formation was first reported in 1976.1 This electrochemical failure mode of electronic substrates involves the growth of a copper containing filament subsurface along the epoxy-glass interface, from anode to cathode. Despite the projected lifetime reduction due to CAF, field failures were not identified in the 1980s. Recently, however, field failures of critical equipment have been reported.2 A thorough understanding of the nature of CAF is needed in order to prevent this catastrophic failure from affecting electronic assemblies in the future. Such an understanding requires a comprehensive evaluation of the factors that enhance CAF formation. These factors can be grouped into two types: (1) internal variables and (2) external influences. Internal variables include the composition of the circuit board material, and the conductor metallization and configuration (i.e. via to via, via to surface conductor or surface conductors to surface conductors). External influences can be due to (1) production and (2) storage and use. During production, the flux or hot air solder leveling (HASL) fluid choice, number and severity of temperature cycles, and the method of cleaning may influence CAF resistance. During storage and use, the principal concern is moisture uptake resulting from the ambient humidity. This paper will report on the relationship between these various factors and the formation of CAF. Specifically, we will explore the influences of printed wiring board (PWB) substrate choice as well as the influence of the soldering flux and HASL fluid choices. Due to the ever-increasing circuit density of electronic assemblies, CAF field failures are expected to increase unless careful attention is focused on material and processing choices.

Georgia Institute of Technology

  1  

flux identifier kit searches for Companies, Equipment, Machines, Suppliers & Information

Electronics Equipment Consignment

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
2024 Eptac IPC Certification Training Schedule

High Precision Fluid Dispensers
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications


500+ original new CF081CR CN081CR FEEDER in stock