Technical Library: flux paste (Page 1 of 4)

Cleaning No-Clean Fluxes Prior to Conformal Coating

Technical Library | 2020-03-09 10:50:17.0

A customer called the Helpline seeking advice for cleaning no-clean fluxes prior to applying a conformal coating. The customer's assemblies were manufactured with a no-clean rosin based solder paste (ROL0) and were cleaned with an isopropyl alcohol (IPA) wash. After cleaning, a white residue was sometimes found in areas with high paste concentrations and was interfering with the adhesion of the conformal coating (Figure 1). For conformal coatings to adhere properly, the printed circuit board (PCB) surface must be clean of fluxes and other residues. In addition, ionic contamination left by flux residues can lead to corrosion and dendrite growth, two common causes of electronic opens and shorts. Other residues can lead to unwanted impedance and physical interference with moving parts.

ACI Technologies, Inc.

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Solder Paste for BGA Rework | Multiple Methods for Applying Paste Flux

Technical Library | 2017-03-30 18:34:52.0

There are multiple methods, each with its associated benefits for given applications, for printing either solder paste or paste flux for BGA rework. Each of these methods is best-suited for a given situation, board layout and skill level of operators performing the BGA rework. This discussion will layout the various methods and present the specific circumstances for which the specific technique is most wellsuited. In addition, the pluses and minuses for each of the approaches will be discussed in detail.

BEST Inc.

StencilQuick™ Lead-Free Solder Paste Rework Study

Technical Library | 2007-01-31 15:17:04.0

The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.

BEST Inc.

DOE for Process Validation Involving Numerous Assembly Materials and Test Methods.

Technical Library | 2010-03-18 14:02:03.0

Selecting products that have been qualified by industry standards for use in printed circuit board assembly processes is an accepted best practice. That products which have been qualified, when used in combinations not specifically qualified, may have resultant properties detrimental to assembly function though, is often not adequately understood. Printed circuit boards, solder masks, soldering materials (flux, paste, cored wire, rework flux, paste flux, etc.), adhesives, and inks, when qualified per industry standards, are qualified using very specific test methods which may not adequately mimic the assembly process ultimately used.

Trace Laboratories

Can Age and Storage Conditions Affect the SIR Performance of a No-Clean Solder Paste Flux Residue?

Technical Library | 2017-02-09 17:08:44.0

The SMT assembly world, especially within the commercial electronics realm, is dominated by no-clean solder paste technology. A solder paste flux residue that does not require removal is very attractive in a competitive world where every penny of assembly cost counts. One important aspect of the reliability of assembled devices is the nature of the no-clean solder paste flux residue. Most people in this field understand the importance of having a process that renders the solder paste flux residue as benign and inert as possible, thereby ensuring electrical reliability.But, of all the factors that play into the electrical reliability of the solder paste flux residue, is there any impact made by the age of the solder paste and how it was stored? This paper uses J-STD-004B SIR (Surface Insulation Resistance) testing to examine this question.

Indium Corporation

Flux Collection and Self-Clean Technique in Reflow Applications

Technical Library | 2008-05-14 15:44:58.0

This paper will review some basic past and present flux chemistries that affect flux collection methodology. It will also review some of the most common flux collection methods, self-cleaning techniques, and maintenance goals. And, finally, data will be presented from high volume production testing of an advanced flux management system.

Speedline Technologies, Inc.

BTC and SMT Rework Challenges

Technical Library | 2019-05-22 21:24:05.0

voidless treatment Smaller components -> miniaturization (01005 capability) Large board handling -> dynamic preheating for large board repair Repeatable processes -> flux and paste application (Dip and Print), residual solder removal (scavenging), dispensing, multiple component handling, and traceability Operator support -> higher automation, software guidance

kurtz ersa Corporation

A Novel Epoxy Flux On Solder Paste For Assembling Thermally Warped POP

Technical Library | 2017-08-17 12:23:27.0

A novel epoxy flux EF-A was developed with good compatibility with no-clean solder pastes, and imparts high reliability for BGA assembly at a low cost. This compatibility with solder pastes is achieved by a well-engineered miscibility between epoxy and no-clean solder paste flux systems, and is further assured with the introduction of a venting channel. The compatibility enables a single bonding step for BGAs or CSPs, which exhibit high thermal warpage, to form a high-reliability assembly. Requirements in drop test, thermal cycling test (TCT), and SIR are all met by this epoxy flux, EF-A. The high viscosity stability at ambient temperature is another critical element in building a robust and userfriendly epoxy flux system. EF-A can be deposited with dipping, dispensing, and jetting. Its 75°C Tg facilitates good reworkability and minimizes the adverse impact of unfilled underfill material on TCT of BGA assemblies.

Indium Corporation

Cleaning PCB's in Electronics - Understanding Today's Needs.

Technical Library | 2014-03-27 14:50:01.0

Because of the phase out of CFC's and HCFC's, standard solder pastes and fluxes evolved from RA and RMA fluxes, to No-Clean, to low residue No-Clean, to very low residue No-Clean. Many companies came out with their cleaning solutions, aqueous and semi-aqueous, with each product release being more innovative than the previous one. Unfortunately for most of the suppliers of cleaners, two other trends appeared; lead-free soldering and the progressive miniaturization of electronic devices.

Inventec Performance Chemicals

  1 2 3 4 Next

flux paste searches for Companies, Equipment, Machines, Suppliers & Information