Technical Library | 2024-08-29 18:30:46.0
The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study
Technical Library | 2001-05-23 16:29:52.0
Management consultant R. Michael Donovan outlines the problems and opportunities of performance measurement as an "enabling force" for improving overall business performance...
Technical Library | 2016-06-23 13:24:56.0
Proper assembly of components is critical in the manufacturing industry as it affects functionality and reliability. In a heat sink assembly, a detailed manual process is often utilized. However, an automated fixture is used whenever applicable.This paper will illustrate the use of strain gauge testing and Finite Element Analysis (FEA) as a simulation tool to evaluate and optimize the heat sink assembly process by manual and automated methods. Several PCBAs in the production line were subjected to the manual and automated assembly process. Strain gauge testing was performed and FEA models were built and run. Results were compared with the goal of improving the FEA model. The updated FEA model will be used in simulating different conditions in assembly. Proposed improvement solutions to some issues can also be verified through FEA.
Technical Library | 2001-05-23 16:23:26.0
Lowering inventories is one of the quickest ways to decrease working capital needs. Performance measurements, such as the old standby ROA (return on assets) and the newer EVA (economic value added), as well as other measures that gauge how efficiently capital is used, have become more common organizational drivers. In fact, many an executive’s bonus depends, at least in part, on how efficiently capital is used.
Technical Library | 2011-02-03 17:58:46.0
First introduced in the year 2000, the 0201 package was sold in significant numbers in the electronics industry by 2003. According to some estimates, it currently accounts for approximately 20% of surface mounted component (SMC) demand worldwide1. This pu
Technical Library | 2010-12-22 13:59:14.0
This paper discusses polymer based nanogels, nanofluids and nanopastes for thermal interface material (TIM) applications. Nanopaste and nanogel formulated using controlled-sized particles to fill small bond lines is highlighted.
Technical Library | 2020-10-08 00:55:22.0
This article presents the development of a stretchable sensor network with high signal-to-noise ratio and measurement accuracy for real-time distributed sensing and remote monitoring. The described sensor network was designed as an island-and-serpentine type network comprising a grid of sensor "islands" connected by interconnecting "serpentines." A novel high-yield manufacturing process was developed to fabricate networks on recyclable 4-inch wafers at a low cost. The resulting stretched sensor network has 17 distributed and functionalized sensing nodes with low tolerance and high resolution. The sensor network includes Piezoelectric (PZT), Strain Gauge(SG), and Resistive Temperature Detector (RTD) sensors. The design and development of a flexible frame with signal conditioning, data acquisition, and wireless data transmission electronics for the stretchable sensor network are also presented. The primary purpose of the frame subsystem is to convert sensor signals into meaningful data, which are displayed in real-time for an end-user to view and analyze. The challenges and demonstrated successes in developing this new system are demonstrated, including (a) developing separate signal conditioning circuitry and components for all three sensor types (b) enabling simultaneous sampling for PZT sensors for impact detection and (c)configuration of firmware/software for correct system operation. The network was expanded with an in-house developed automated stretch machine to expand it to cover the desired area. The released and stretched network was laminated into an aerospace composite wing with edge-mount electronics for signal conditioning, processing, power, and wireless communication.
Technical Library | 2008-02-05 22:48:55.0
This study investigates the technological properties of quaternary or quinary alloys made by addition Bi or Bi and Sb elements to the SnAgCu solders. The influence of added elements on the electrical and mechanical properties of solder joints created by these solders between PCB and electronic components were evaluated.
Unipress - Institute of High Pressure Physics of the Polish Academy of Sciences
Technical Library | 2018-03-05 11:22:48.0
Growing demands for smaller electronic assemblies has resulted in reduced sizes of passive components, requiring the introduction of newer components, such as the 01005 devices. Component miniaturization presents significant challenges to the traditional surface mount assembly process. A successful assembly solution for these 01005 devices should be repeatable and reproducible, and should include guidelines for (i) the selection of solder paste and (ii) appropriate stencil and substrate pad design, and should ensure strict process control standards.
Technical Library | 2020-08-13 01:12:57.0
The solar industry has driven solutions that result in electronics systems that are required to perform in outside environments for over 25 years. This industry expectation has resulted in solutions to protect the electronics from failure that can result from interaction with moisture, and various chemicals leading to corrosion and shorting of the systems. Potting and encapsulation compounds can impart the very high level of protection from environmental, thermal, chemical, mechanical, and electrical conditions that the solar applications demand.