Technical Library: graphene (Page 1 of 1)

Strain Solitons and Topological Defects in Bilayer Graphene

Technical Library | 2014-05-01 15:14:12.0

Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them

Cornell University

Graphene electronic fibres with touch-sensing and light emitting functionalities for smart textiles

Technical Library | 2019-08-29 13:04:55.0

The true integration of electronics into textiles requires the fabrication of devices directly on the fibre itself using high-performance materials that allow seamless incorporation into fabrics. Woven electronics and opto-electronics, attained by intertwined fibres with complementary functions are the emerging and most ambitious technological and scientific frontier. Here we demonstrate graphene-enabled functional devices directly fabricated on textile fibres and attained by weaving graphene electronic fibres in a fabric. Capacitive touch-sensors and light-emitting devices were produced using a roll-to-roll-compatible patterning technique, opening new avenues for woven textile electronics. Finally, the demonstration of fabric-enabled pixels for displays and position sensitive functions is a gateway for novel electronic skin, wearable electronic and smart textile applications.

University of Exeter, College of Engineering, Mathematics and Physical Sciences

Fracture Toughness Analysis of Epoxy-Recycled Rubber-Based Composite Reinforced with Graphene Nanoplatelets for Structural Applications in Automotive and Aeronautics

Technical Library | 2021-02-25 14:19:00.0

This study proposes a new design of lightweight and cost-e#14;cient composite materials for the aeronautic industry utilizing recycled fresh scrap rubber, epoxy resin, and graphene nanoplatelets (GnPs). After manufacturing the composites, their bending strength and fracture characteristics were investigated by three-point bending (3PB) tests. Halpin–Tsai homogenization adapted to composites containing GnPs was used to estimate the moduli of the composites, and satisfactory agreement with the 3PB test results was observed.

Université Paris-Saclay

High-Performance Ink-Jet Printed Graphene Resistors Formed With Environmentally-Friendly Surfactant-Free Inks For Extreme Thermal Environments

Technical Library | 2018-01-11 10:48:48.0

Ink-jet printing is poised to impact the manufacturing of devices that are particularly attractive for flexible electronics, as more suitable and printable fluids become available. The addition of surfacants in the preparation of the inks usually results in additional process steps, potentially increasing cost, as well as material waste, where the surfactants also often have a negative impact on specific properties of the printed features, such as comprising electrical conductivity of metallic structures. (...)In this work, we have successfully formulated a suitable ink derived from a mixture of terpineolin cyclohexanone as a more environmentally friendly option for the exfoliation of bulk graphite, which we elaborate upon in more detail here.

University of Texas

3D Printing Electronic Components And Circuits With Conductive Thermoplastic Filament

Technical Library | 2023-06-02 14:13:02.0

This work examines the use of dual-material fused filament fabrication for 3D printing electronic componentsand circuits with conductive thermoplastic filaments. The resistivity of traces printed fromconductive thermoplastic filaments made with carbon-black, graphene, and copper as conductive fillerswas found to be 12, 0.78, and 0.014 ohm cm, respectively, enabling the creation of resistors with valuesspanning 3 orders of magnitude. The carbon black and graphene filaments were brittle and fracturedeasily, but the copper-based filament could be bent at least 500 times with little change in its resistance.Impedance measurements made on the thermoplastic filaments demonstrate that the copper-based filamenthad an impedance similar to a copper PCB trace at frequencies greater than 1 MHz. Dual material3D printing was used to fabricate a variety of inductors and capacitors with properties that could bepredictably tuned by modifying either the geometry of the components, or the materials used to fabricatethe components. These resistors, capacitors, and inductors were combined to create a fully 3Dprinted high-pass filter with properties comparable to its conventional counterparts. The relatively lowimpedance of the copper-based filament enabled its use for 3D printing of a receiver coil for wirelesspower transfer. We also demonstrate the ability to embed and connect surface mounted components in3D printed objects with a low-cost ($1000 in parts), open source dual-material 3D printer. This work thusdemonstrates the potential for FFF 3D printing to create complex, three-dimensional circuits composedof either embedded or fully-printed electronic components.

A.T.E. Solutions, Inc.

  1  

graphene searches for Companies, Equipment, Machines, Suppliers & Information