Technical Library: green (Page 1 of 2)

The Greening of the Reflow Process

Technical Library | 2023-01-17 17:35:07.0

After years of concentration on resolving productivity- related concerns such as increasing speed, consistency and throughput while reducing costs, many of the world's leading electronics manufacturers have added a new mandate to their agendas. They are seeking to minimize the environmental impacts of their assembly processes and final products without sacrificing the high levels of productivity and quality that have been achieved through decades of effort.

Heller Industries Inc.

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Performance of Light Emitting Diode on Surface Machined Heat Sink

Technical Library | 2014-05-15 14:26:27.0

350mA). Slotted surface showed good performance on both thermal and optical properties of the given 3W green LED.

Universiti Sains Malaysia

Where will Computer Numerical Control Machines Go

Technical Library | 2021-11-04 01:34:02.0

At present, the development of Computer Numerical Control (CNC) machines with each passing day, characteristics of high-speed, high-precision, complex, intelligent, open, parallel drive, network, extreme, green have become the trend and direction.

OKmarts Industrial Parts Mall

The Environmental Cost of Green

Technical Library | 2009-09-30 23:12:29.0

Being involved in the electronics assembly industry for more than 23 years, specifically in the field of defluxing and cleanliness testing, I have seen my share of environmental regulations. Long before the debate over lead-free alloys, there was the Montreal Protocol.

Aqueous Technologies Corporation

Green Supply Chain Management, Economic Growth and Environment: A GMM Based Evidence

Technical Library | 2018-05-30 15:31:21.0

The aim of this research is to examine the relationship between green logistics operations and energy demand, economic growth and environmental sustainability need to make factors for relationship clearer in a panel data of 43 different countries around the globe. The study employed panel Generalized Method of Moments (GMM) estimates for robust inferences. The results have revealed that logistics operations consume energy and fossil fuel, while the amount of fossil fuel and non-green energy sources create significant harmful effect on the environmental sustainability and also have negative effect on economic growth. In addition, poor transport-related infrastructure and logistics service are a major contributor of CO2 and total greenhouse gas emissions. However, carbon emission damages fauna and flora, and reduces economic growth. The findings suggest that renewable energy sources and green practices can mitigate harmful effect of logistics operations on environmental sustainability and spur economic activities with greatly export opportunities in a region.

Changan University

The Call for Halogen-Free Electronic Assemblies

Technical Library | 2009-06-17 18:52:27.0

The increased interest in halogen-free assemblies is a result of Non-Government Organizations (NGOs) exerting pressure on electronic equipment manufacturers to eliminate halogens. The NGOs primary focus is on resolving global environmental issues and concerns. As a result of an increase in the enormous "e-waste" dump sites that have begun showing up around the world, NGOs are pushing consumer electronic manufacturers to ban halogen-containing material in order to produce "green" products. Not only are these sites enormous, but the recycling methods are archaic and sometimes even illegal.This stockpiling and dumping has created growing political and environmental issues. In order to deal with this issue, the question of why halogens are a focal point must be addressed.

AIM Solder

21st Century PCB FAB Factory Design Which Eliminates Regional Cost Advantages

Technical Library | 2017-11-01 17:06:38.0

Over fifteen years has passed since North America and Europe ceased being the center of worldwide PCB fabrication, and were supplanted by a Far East market with low cost labor, more relaxed environmental requirements, and strong government support. In just a few short years, the superior cost advantages of this new dynamic put volume PCB production in the West out of business, aside for the military and specialty technology applications contained in the few shops that continue to exist today.Recently, however, the conditions which created the current equilibrium appear to be shifting again. In this new dynamic, automation, innovative green wastewater technologies, and next generation process equipment innovations have combined to make new factories capable of achieving rapid ROI for PCB fabrication almost anywhere. This paper means to illustrate this new dynamic, and provide case study examples from the new greenfield installation at the company captive facility in New Hampshire.

Whelen Engineering

Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene

Technical Library | 2015-03-19 20:33:34.0

Silicon is arguably the best electronic material, but it is not a good optoelectronic material. By employing first-principles calculations and the cluster-expansion approach, we discover that hydrogenated bilayer silicene (BS) shows promising potential as a new kind of optoelectronic material. Most significantly, hydrogenation converts the intrinsic BS, a strongly indirect semiconductor, into a direct-gap semiconductor with a widely tunable band gap. At low hydrogen concentrations, four ground states of single- and double sided hydrogenated BS are characterized by dipole-allowed direct (or quasidirect) band gaps in the desirable range from 1 to 1.5 eV, suitable for solar applications. At high hydrogen concentrations, three well-ordered double-sided hydrogenated BS structures exhibit direct (or quasidirect) band gaps in the color range of red, green, and blue, affording white light-emitting diodes. Our findings open opportunities to search for new silicon-based light-absorption and light-emitting materials for earth-abundant, high efficiency, optoelectronic applications.Originally published by the American Physical Society

Oak Ridge National Laboratory

Filling of Microvias and Through Holes by Electrolytic Copper Plating –Current Status and Future Outlook

Technical Library | 2020-03-12 13:10:35.0

The electronics industry is further progressing in terms of smaller, faster, smarter and more efficient electronic devices. This continuous evolving environment caused the development on various electrolytic copper processes for different applications over the past several decades. (...) This paper describes the reasons for development and a roadmap of dimensions for copper filled through holes, microvias and other copper plated structures on PCBs.

Atotech

  1 2 Next

green searches for Companies, Equipment, Machines, Suppliers & Information