Technical Library | 2019-07-10 23:36:14.0
Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further leading to performance degradation.
Technical Library | 2023-01-17 17:12:33.0
Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.
Technical Library | 2024-08-20 00:41:48.0
Thermal interface materials (TIMs) play a pivotal role in ensuring efficient thermal management by facilitating heat transfer between heat generating components and heat-dissipating devices
Technical Library | 2023-08-16 18:25:16.0
In one of our Consumer Electronics projects, a leader of networking technologies requested to test dispensing performance of a thermally conductive material, Fujipoly Sarcon SPG-50A. This material improves heat dissipation for higher frequency applications and reduces the negative effects of thermal resistance under heat, cold, humid, and thermal shock conditions. The customer's goal was to dispense a 1mm diameter dot with acceptable speed and consistency.
Technical Library | 1999-05-06 10:30:06.0
Augmentation of extended surfaces used to dissipate heat increases the overall effectiveness of a heat sink and increases the heat removed per unit volume. This amount of increase depends on the number of augmentations, air flow velocity and ...
Technical Library | 1999-05-06 11:18:25.0
The trend toward surface-mount assembly processes is making ball-grid array (BGA) packaging a popular choice for many types of devices, forcing designers to re-examine cooling of these large packages. While devices in BGAs transfer more heat to the board than leaded devices, the style of BGA packages has a large influence on the ability to transfer heat through other pathways, such as a top-mounted heat sink. Physical characteristics of the BGA further constrain the thermal designer. It takes forethought in board design to successfully accommodate devices that require significant heat dissipation. Multiple solutions exist, however, for BGA packages of all types.
Technical Library | 1999-05-06 11:03:39.0
As microprocessor speeds increase, their power needs rise proportionally. This also puts higher demands on the voltage regulator that feeds the processor chip. In spite of the increased power, the regulator chip tends to remain the same size..
Technical Library | 2022-12-05 16:28:06.0
The work evaluates the impact of latent heat (LH) absorbed or released by a solder alloy during melting or solidification, respectively, on changes of dimensions of materials surrounding of the solder alloy. Our sample comprises a small printed circuit board (PCB) with a blind via filled with lead-free alloy SAC305. Differential scanning calorimetry (DSC) was employed to obtain the amount of LH per mass and a thermomechanical analyzer was used to measure the thermally induced deformation. A plateau during melting and a peak during solidification were detected during the course of dimension change. The peak height reached 1.6 μm in the place of the heat source and 0.3 μm in the distance of 3 mm from the source. The data measured during solidification was compared to a numerical model based on the finite element method. An excellent quantitative agreement was observed which confirms that the transient expansion of PCB during cooling can be explained by the release of LH from the solder alloy during solidification. Our results have important implications for the design of PCB assemblies where the contribution of recalescence to thermal stress can lead to solder joint failure.
Technical Library | 1999-07-20 09:28:38.0
With the increase in heat dissipation from microelectronic devices and the reduction in overall form factors, thermal management bmomes a more and more important element of electronic product design. Both the performance reliability and life expectancy of electronic equipment are inversely related to the component temperature of the equipment...
Technical Library | 2024-07-24 00:51:44.0
A blade server system (BSS) utilizes voltage regulator modules (VRMs), in the form of quad flat no-lead (QFN) devices, to provide power distribution to various components on the system board. Depending on the power requirements of the circuit, these VRMs can be mounted as single devices or banked together. In addition, the power density of the VRM can be high enough to warrant heat dissipation through the use of a heat sink. Typically, at field conditions (FCs), the BSS are powered on and off up to four times per day, with their ambient temperature cycling between 258C and 808C. This cyclical temperature gradient drives inelastic strain in the solder joints due to the coefficient of thermal expansion (CTE) mismatch between the QFN and the circuit card. In addition, the heat sink, coupled with the QFN and the circuit card, can induce additional inelastic solder joint strain, resulting in early solder joint fatigue failure. To understand the effect of the heat sink mounting, a FEM (finite element model of four QFNs mounted to a BSS circuit card was developed. The model was exercised to calculate the maximum strain energy in a critical joint due to cyclic strain, and the results were compared for a QFN with and without a heat sink. It was determined that the presence of the heat sink did contribute to higher strain energy and therefore could lead to earlier joint failure. Although the presence of the heat sink is required, careful design of the mounting should be employed to provide lateral slip, essentially decoupling the heat sink from the QFN joint strain. Details of the modeling and results, along with DIC (digital image correlation) measurements of heat sink lateral slip, are presented.