Technical Library: high mix (Page 1 of 2)

Selective Soldering and the Modular Approach

Technical Library | 2019-08-08 10:23:51.0

High mix production is the mainstay of many electronics assembly plants. Lot sizes and board complexities vary and the boards are often mixed technology, comprising a blend of both surface mount and through-hole technology. Modularizing a production line enables a clear distinction between one type of assembly process and another. This article assumes a modern factory where a job can be routed to the selective soldering machine module, the hand assembly bench, or a combination of both. The decision rules of routing a circuit board through hand assembly versus automated selective soldering are discussed. Hand assembly soldering operations require no explanation.

ACI Technologies, Inc.

An Alternative Dispense Process for Application of Catalyst Films on MEA's

Technical Library | 2008-10-01 14:02:27.0

This paper proposes an integrated system for film application process than consists of closed loop mass calibration to assure film thickness, a noncontact fast jetting process with high edge definition capable of applying films for highly selective areas and patterns. A system to obtain homogeneity of the solid-fluid mix is described and results are shared.

ASYMTEK Products | Nordson Electronics Solutions

SMT Line Improvements for High Mix, Low Volume Electronics Manufacturing

Technical Library | 2011-08-04 19:29:53.0

This work covers two major projects aimed at increasing quality and efficiency on a high mix, low volume surface mount electronics production line. Specifically the installation of a ten zone reflow oven and an enhanced changeover method for SMT pick and

Auburn University

Overcoming Logistic, Economic and Technical Challenges to Implementing Functional Test in High Mix / High Volume Production Environments

Technical Library | 2012-11-29 14:23:58.0

1000 units per day) production environment presents challenging technical, logistic and cost obstacles that are usually more complex than those encountered at the inspection (automated optical inspection) and the manufacturing process test step (in-circuit test).

SiFO Technologies

Placement Optimisation in a Lean Manufacturing Environment

Technical Library | 2008-02-20 21:42:52.0

Tier 2 and Tier 3 EMS companies face increasing pressure from competition in low-cost manufacturing countries to produce assembled boards at lower cost, with increased complexity and to tighter deadlines. They also face an increasing amount of high-mix, small-to-mediumvolume production runs. Even OEMs find it hard to predict what products they will be manufacturing in three to five years time, driving the need to invest in highly flexible production tools that will cater to their needs over the lifetime of the equipment. This paper examines methodologies for optimising the process, improving stock control and providing greater traceability using lean manufacturing techniques.

EUROPLACER

HALT Testing of Backward Soldered BGAs on a Military Product

Technical Library | 2015-11-19 18:15:07.0

The move to lead free (Pb-free) electronics by the commercial industry has resulted in an increasing number of ball grid array components (BGAs) which are only available with Pb-free solder balls. The reliability of these devices is not well established when assembled using a standard tin-lead (SnPb) solder paste and reflow profile, known as a backward compatible process. Previous studies in processing mixed alloy solder joints have demonstrated the importance of using a reflow temperature high enough to achieve complete mixing of the SnPb solder paste with the Pb-free solder ball. Research has indicated that complete mixing can occur below the melting point of the Pb-free alloy and is dependent on a number of factors including solder ball composition, solder ball to solder paste ratio, and peak reflow times and temperatures. Increasing the lead content in the system enables full mixing of the solder joint with a reduced peak reflow temperature, however, previous research is conflicting regarding the effect that lead percentage has on solder joint reliability in this mixed alloy solder joint.

Lockheed Martin Corporation

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

ACHIEVING EXCELLENT VERTICAL HOLE FILL ON THERMALLY CHALLENGING BOARDS USING SELECTIVE SOLDERING

Technical Library | 2023-11-14 19:52:11.0

The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.

Plexus Corporation

Selective Soldering Process

Technical Library | 2008-01-24 21:42:39.0

Although many through-hole components are being replaced by their surface mount (SMT) counterparts, printed circuit boards (PCBs) are still being designed with both types of components. Often, there are interconnect hardware, displays, or other components that cannot withstand the exposure to the high temperature involved in the wave soldering process. They are generally soldered by hand. The challenge is to determine the optimal method manufacturers can use to solder these boards populated with mixed technology.

Electronics Manufacturing Productivity Facility (EMPF)

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

  1 2 Next

high mix searches for Companies, Equipment, Machines, Suppliers & Information