Technical Library | 2023-11-25 07:46:13.0
In the dynamic realm of Surface Mount Technology (SMT), where efficiency and precision are paramount, I.C.T, a renowned SMT equipment manufacturer, proudly unveils its latest innovation – the I.C.T-910 Automatic IC Programming System. Crafted to cater to the intricate demands of SMD chip programming, this cutting-edge device vows to redefine your programming experience and elevate production capabilities. Programming system.png The Power of IC Programming System: As a beacon of excellence in IC Programming Systems, the I.C.T-910 seamlessly integrates advanced technology with user-friendly features. This system empowers manufacturers in the SMT industry, offering versatility in programming needs by accommodating a wide range of SMD chips. Precision Programming: The I.C.T-910 boasts unparalleled precision in programming SMD chips, ensuring accuracy in every generated code. In the SMT industry, where even the slightest error can lead to setbacks, this precision is indispensable. Efficiency Redefined: Accelerate your production timelines with the I.C.T-910's efficient programming capabilities. Engineered to optimize workflows, this system ensures rapid programming without compromising quality, recognizing that time is money in the SMT industry. User-Friendly Interface: Navigating the complexities of IC programming is simplified with the I.C.T-910's intuitive user interface. Operators, even without extensive programming expertise, can harness the system's power, minimizing the learning curve and maximizing productivity. Compatibility and Adaptability: The I.C.T-910 breaks free from limitations, supporting a wide array of SMD chip models. It is a versatile solution for diverse programming requirements, allowing you to stay ahead of technological advancements. Why Choose I.C.T-910 IC Programming System? 8 sets of 32-64sit burners Nozzle: 4pcs Camera: 2pcs (Component camera + Marking camera) UPH: 2000-3000PCS/H Package type: PLCC, JLCC, SOIC, QFP, TQFP, PQFP, VQFP, TSOP, SOP, TSOPII, PSOP, TSSOP, SON, EBGA, FBGA, VFBGA, BGA, CSP, SCSP, and so on. Compatibility: Adapters provided based on customer products. Simple operation interface: Modular and layered interface with pictures and texts for easy operation. System upgrade: Free software upgrade service. Reliability: Trust in the I.C.T-910, a programming system that prioritizes reliability. Rigorous testing ensures consistent and dependable performance, reducing the risk of programming errors and downtime. Elevate Your Competitiveness: Incorporate the I.C.T-910 into your production line to elevate competitiveness in the market. Stay ahead with a programming system designed to meet the demands of the fast-paced SMT industry. Embrace the Future with I.C.T-910: In a landscape where precision, efficiency, and adaptability are non-negotiable, the I.C.T-910 Automatic IC Programming System emerges as the game-changer for SMT manufacturers. Revolutionize your programming processes, enhance productivity, and future-proof your operations with the I.C.T-910. Choose I.C.T-910 and stay ahead in the SMT industry, ushering in the next era of IC programming excellence.
Technical Library | 2016-11-03 17:53:56.0
We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA) chip. Vertically aligned carbon nanotubes (VACNTs) were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs) were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip.In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources.
Technical Library | 2019-04-18 21:53:04.0
IPX9K Rain Spray Test Chamber(high Pressure high temperature water jet) simulates the use of pressure washer steam cleaning onto the enclosure, It is recognised as the harshest of all ingress protection tests. However the requirement is becoming more prevalent across many industries. Test method for IPX9K : Make sure the water temperature inside the water tank +80°C, water flow rate with 14L-16L per min, water pressure: 8000 Kpa -10000 Kpa (80–100 bar) at distance of 100mm~ 150mm, The test duration is 30 seconds in each of 4 angles, total spray testing time is 2 minutes. IPX9 rain test chamber applicable standards: IEC 60529 – Degrees of protection provided by enclosures (IP Code).Here is working principle in picture.
Technical Library | 2020-03-26 14:55:29.0
This paper introduces line confocal technology that was recently developed to characterize 3D features of various surface and material types at sub-micron resolution. It enables automatic microtopographic 3D imaging of challenging objects that are difficult or impossible to scan with traditional methods, such as machine vision or laser triangulation.Examples of well-suited applications for line confocal technology include glossy, mirror-like, transparent and multi-layered surfaces made of metals (connector pins, conductor traces, solder bumps etc.), polymers (adhesives, enclosures, coatings, etc.), ceramics (components, substrates, etc.) and glass (display panels, etc.). Line confocal sensors operate at high speed and can be used to scan fast-moving surfaces in real-time as well as stationary product samples in the laboratory. The operational principle of the line confocal method and its strengths and limitations are discussed.Three metrology applications for the technology in electronics product manufacturing are examined: 1. 3D imaging of etched PCBs for micro-etched copper surface roughness and cross-sectional profile and width of etched traces/pads. 2. Thickness, width and surface roughness measurement of conductive ink features and substrates in printed electronics applications. 3. 3D imaging of adhesive dots and lines for shape, dimensions and volume in PCB and product assembly applications.
Technical Library | 2019-05-08 01:46:32.0
IPX9K Rain Spray Test Chamber(high Pressure high temperature water jet) simulates the use of pressure washer steam cleaning onto the enclosure, It is recognised as the harshest of all ingress protection tests. However the requirement is becoming more prevalent across many industries. Test method for IPX9K : Make sure the water temperature inside the water tank +80°C, water flow rate with 14L-16L per min, water pressure: 8000 Kpa -10000 Kpa (80–100 bar) at distance of 100mm~ 150mm, The test duration is 30 seconds in each of 4 angles, total spray testing time is 2 minutes. IPX9K rain test chamber applicable standards: IEC 60529 – Degrees of protection provided by enclosures (IP Code).Here is working principle in picture. Application: It is mainly suitable for testing the performance of shell and seal of electrical and electronic parts, automobile parts and seals under the condition of dripping rain to prevent Rain Water from permeating or working after drizzling.
Technical Library | 2020-10-08 00:55:22.0
This article presents the development of a stretchable sensor network with high signal-to-noise ratio and measurement accuracy for real-time distributed sensing and remote monitoring. The described sensor network was designed as an island-and-serpentine type network comprising a grid of sensor "islands" connected by interconnecting "serpentines." A novel high-yield manufacturing process was developed to fabricate networks on recyclable 4-inch wafers at a low cost. The resulting stretched sensor network has 17 distributed and functionalized sensing nodes with low tolerance and high resolution. The sensor network includes Piezoelectric (PZT), Strain Gauge(SG), and Resistive Temperature Detector (RTD) sensors. The design and development of a flexible frame with signal conditioning, data acquisition, and wireless data transmission electronics for the stretchable sensor network are also presented. The primary purpose of the frame subsystem is to convert sensor signals into meaningful data, which are displayed in real-time for an end-user to view and analyze. The challenges and demonstrated successes in developing this new system are demonstrated, including (a) developing separate signal conditioning circuitry and components for all three sensor types (b) enabling simultaneous sampling for PZT sensors for impact detection and (c)configuration of firmware/software for correct system operation. The network was expanded with an in-house developed automated stretch machine to expand it to cover the desired area. The released and stretched network was laminated into an aerospace composite wing with edge-mount electronics for signal conditioning, processing, power, and wireless communication.
1 |