Technical Library | 2021-11-25 01:24:20.0
Pressure transmitter is a kind of pressure measuring instrument widely used in many transmitters. It is widely used in petroleum, chemical, metallurgy, food, electric power, medicine, papermaking, textile and other industries. It is mainly used to detect the differential pressure, pressure, absolute pressure and liquid level of fluid.
Technical Library | 2013-12-11 23:24:32.0
Today's analyses of electronics reliability at the system level typically use a "black box approach", with relatively poor understanding of the behaviors and performances of such "black boxes" and how they physically and electrically interact (...) The incorporation of more rigorous and more informative approaches and techniques needs to better understand (...) Understanding the Physics of Failure (PoF) is imperative. It is a formalized and structured approach to Failure Analysis/Forensics Engineering that focuses on total learning and not only fixing a particular current problem (...) In this paper we will present an explanation of various physical models that could be deployed through this method, namely, wire bond failures; thermo-mechanical fatigue; and vibration.
Technical Library | 2019-05-16 02:25:15.0
limatest Symor wants to tell you that humidity is not only the most important thing in the chamber, but also the temperature In order to facilitate customers to add water, our temperature and humidity test chamber is to place the water tank at back of the equipment.Just open the baffle to see the water tank and the water level meter next to the tank,then add enough water to the tank. However, in addition to manual water addition, our temperature and humidity test chamber has equipment that can automatically add water. Only by connecting the water pipe at the water filling port can it be automatically replenished when there is a shortage of water, which is suitable for high humidity test for a long time.
Technical Library | 2017-05-17 22:33:43.0
The selective soldering application requires a combination of performance attributes that traditional liquid fluxes designed for wave soldering applications cannot fulfill. First, the flux deposition on the board needs to be carefully controlled. Proper fine tuning of the flux physicochemical characteristics combined with a process optimization are mandatory to strike the right balance between solderability and reliability. However, localization of the flux residue through the drop jet process is not enough to guarantee the expected performance level. The flux needs to be designed to minimize the impact of unavoidable spreading and splashing events.From this perspective a fundamental understanding of the relationships between formulation and reliability is critical. In this application, thermal history of the flux residues (from room temperature to solder liquidus) is a key performance driver. Finally, it is necessary to conduct statistically designed experiments on industrial selective soldering machines in order to map the relationships between flux characteristics and selective process friendliness.
1 |