Technical Library | 1999-05-07 10:22:03.0
The MMX™ technology is an extension to the Intel Architecture (IA) aimed at boosting the performance of multimedia applications. This technology is the most significant IA extension since the introduction of the Intel386™ microprocessor. The challenge in implementing this technology came from retrofitting the new functionality into existing Pentium® and Pentium® Pro processor designs.
Technical Library | 1999-05-07 10:20:34.0
Media (video, audio, graphics, communication) applications present a unique opportunity for performance boost via use of Single Instruction Multiple Data (SIMD) techniques. While several of the computeintensive parts of media applications benefit from SIMD techniques, a significant portion of the code still is best suited for general purpose instruction set architectures. MMX™ technology extends the Intel Architecture (IA), the industry's leading general purpose processor architecture, to provide the benefits of SIMD for media applications.
Technical Library | 1999-05-07 10:04:13.0
Powerful desktop multiprocessor systems based on the Intel Architecture (iA) offer a formidable alternative to traditional scientific/engineering workstations for commercial application developers at an attractive costperformance ratio. However, the lack of adequate compiler and runtime library support for multithreading and parallel processing on Windows NT* makes it difficult or impossible to fully exploit the performance advantage of these multiprocessor systems. In this paper we describe the design, development, and initial performance results of the Illinois-Intel Multithreading Library (IML), which aims at providing an efficient and powerful (in terms of types of parallelism it supports) API for multithreaded application developers.
Technical Library | 2021-01-28 01:55:00.0
Printed circuit board surface finishes are a topic of constant discussion as environmental influences, such as the Restriction of Hazardous Substances (RoHS) Directive or technology challenges, such as flip chip and 01005 passive components, initiate technology changes. These factors drive the need for greater control of processing characteristics like coplanarity and solderability, which influence the selection of surface finishes and impact costs as well as process robustness and integrity. The ideal printed circuit board finish would have good solderability, long shelf life, ease of fabrication/processing, robust environmental performance and provide dual soldering/wirebonding capabilities; unfortunately no single industry surface finish possesses all of these traits. The selection of a printed circuit board surface finish is ultimately a series of compromises for a given application.
1 |