Technical Library: in circuit test (Page 5 of 17)

Introduction to Automated Test Fixtures

Technical Library | 2022-05-02 21:35:53.0

Testing of electronic assemblies involves three elements: the device under test, test equipment, and fixturing to make the connections between them. The challenge for a test engineer building a sophisticated test system is that instrumentation may need to measure thousands of test points through the mechanical interconnect.

Circuit Check, Inc.

New Era in Testing DUT over Temperature

Technical Library | 2016-05-13 11:44:16.0

The process of manufacturing and qualifying IC's consists of many steps while Temperature forcing systems play a crucial role in the final testing process. These environmental tests assure quality and reliability by stressing the device on one hand as well as helping to characterize and validate it on the other hand (making sure manufacturing outcome meets the design requirements). At later stages the temperature testing can support failure analysis effort and root cause analysis. AS common practice we are dealing with few different kinds of temperature forcing systems: Chambers, Thermal Stream systems and Direct Thermal Head systems. In this article I would like to focus on the practical aspects of utilizing Thermal Stream systems and Direct Thermal Head systems.

Mechanical Devices

Flexible Termination - Reliability in Stringent Environments

Technical Library | 2009-05-21 13:41:05.0

Failure due to board flex cracks persists as the dominant failure mode in multi-layer ceramic capacitors (MLCC). (...) This paper is intended to show the impact of temperature cycling, high-temperature life tests, and multiple bend exposures to the MLCC with this flexible termination.

KEMET Electronics Corporation

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

Application Of Build-in Self Test In Functional Test Of DSL

Technical Library | 2012-05-23 14:16:41.0

first published in the 2012 IPC APEX EXPO technical conference proceedings. BIST (build-in self test ) is the technique of designing additional hardware and software features into integrated circuits to allow them to perform self-testing, i.e., testing of

Flex (Flextronics International)

Air Flow Measurement in Electronic Systems

Technical Library | 2011-07-28 18:52:34.0

Electronic circuit boards create some of the most complex and highly three dimensional fluid flows in both air and liquid. The combination of open channel (clearance to the next card above the components) and large protrusions (components, e.g., BGAs, PQF

Advanced Thermal Solutions, Inc

Investigation of Device Damage Due to Electrical Testing

Technical Library | 2012-12-14 14:28:20.0

This paper examines the potential failure mechanisms that can damage modern lowvoltage CMOS devices and their relationship to electrical testing. Failure mechanisms such as electrostatic discharge (ESD), CMOS latch-up, and transistor gate oxide degradation can occur as a result of electrical over-voltage stress (EOS). In this paper, EOS due to electrical testing is examined and an experiment is conducted using pulsed voltage waveforms corresponding to conditions encountered during in-circuit electrical testing. Experimental results indicate a correlation between amplitude and duration of the pulse waveform and device degradation due to one or more of the failure mechanisms.

Worcester Polytechnic Institute

Head in Pillow X-ray Inspection at Flextronics

Technical Library | 2014-12-18 17:22:34.0

Manufacturing technology faces challenges with new packages/process when confronting the need for high yields. Identifying product defects associated with the manufacturing process is a critical part of electronics manufacturing. In this project, we focus on how to use AXI to identify BGA Head-in-Pillow (HIP), which is challenging for AXI testing. Our goal is to help us understand the capabilities of current AXI machines.

Flex (Flextronics International)

Void Detection in Large Solder Joints of Integrated Power Electronics

Technical Library | 2012-12-06 17:36:37.0

Inspection of integrated power electronics equals sophisticated test task. X-ray inspection based on 2D / 2.5D principles not utilizable. Full 3D inspection with adapted image capturing and reconstruction is necessary for test task.... First published in the 2012 IPC APEX EXPO technical conference proceedings.

GOEPEL Electronic

True Height Measurement in Solder Paste Inspection

Technical Library | 2015-04-29 03:48:39.0

SPI equipment is routinely used in Printed Circuit Board (PCB) manufacturing to monitor and control one of the most crucial steps affecting the finished quality of circuit board. Solder paste deposition is the key process in board assembly operations using SMT techniques. Our LSM™ system was the industry's first popular method of manually inspecting solder paste; our SE systems revolutionized SMT production by offering an automated method for performing in-process 3D inspection on the assembly line. SPI systems measure the height and volume of the solder pads before the components are applied and the solder melted, and when used properly, can reduce the incidence of solder-related defects to statistically insignificant amounts. Critical to the SPI measurement is the accuracy of the height measurement because that has a direct correlation with solder volume and defects.

CyberOptics Corporation


in circuit test searches for Companies, Equipment, Machines, Suppliers & Information

Lewis & Clark
Lewis & Clark

Lewis and Clark is your #1 Pre-Owned Surface Mount and In-Circuit Test equipment supplier. We offer a variety of equipment solutions at a significant cost savings over new.

Manufacturer / Equipment Dealer / Broker / Auctions

18 Celina Ave., Unit 16
Nashua, NH USA

Phone: (603) 594-4229