Technical Library: in circuit test (Page 10 of 17)

Using Automated 3D X-Ray Inspection to Detect BTC Defects

Technical Library | 2013-07-25 14:02:15.0

Bottom-termination components (BTC), such as QFNs, are becoming more common in PCB assemblies. These components are characterized by hidden solder joints. How are defects on hidden DFN joints detected? Certainly, insufficient solder joints on BTCs cannot be detected by manual visual inspection. Nor can this type of defect be detected by automated optical inspection; the joint is hidden by the component body. Defects such as insufficients are often referred to as "marginal" defects because there is likely enough solder present to make contact between the termination on the bottom-side of the component and the board pad for the component to pass in-circuit and functional test. Should the board be subjected to shock or vibration, however, there is a good chance this solder connection will fracture, leading to an open connection.

Flex (Flextronics International)

Analysis of the Influence of Shrinkage Tensile Stress in Potting Material on the Anti-Overload Performance of the Circuit Board

Technical Library | 2021-08-11 00:55:44.0

In this article, the influence of shrinkage tensile stress in potting materials on the anti-overload performance of a circuit board was studied. Firstly, the phenomenon of shrinkage tensile stress in common potting materials was analyzed, and it was found that the commonly used potting adhesives displayed large shrinkage characteristics. Secondly, a small experiment was set up to verify that the shrinkage tensile stress of potting adhesives would lead to printed circuit board (PCB) deformation, and the shrinkage stress was contrary to the acceleration direction of overload. Thirdly, the influence of potting adhesives on the overload resistance of the PCB was analyzed.

Nanjing University

Precision Cleaning in 21st Century: New Solvent with Low Global Warming Potential

Technical Library | 2012-11-15 23:38:50.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. As we progress in the 21st century, electronics manufacturing will need more and more precision. Parts will get more complex since more components have to be assembled in smaller spaces. Circuit boards and other electronic assemblies will become more densely populated; spacings between components will be shorter. This will require precision manufacturing and efficient cleaning during and post manufacturing. In addition, with population and technology progressing, larger amount of greenhouse gases will be emitted resulting in higher global warming. Intense research effort is going on to develop new generation of chemicals to address both cleaning and global warming issues. Low global warming solutions in refrigeration and as insulating agents are already in the marketplace.

Honeywell International

Copper/Epoxy Joints in Printed Circuit Boards: Manufacturing and Interfacial Failure Mechanisms

Technical Library | 2020-01-09 00:00:30.0

PCBs have a wide range of applications in electronics where they are used for electric signal transfer. For a multilayer build-up, thin copper foils are alternated with epoxy-based prepregs and laminated to each other. Adhesion between copper and epoxy composites is achieved by technologies based on mechanical interlocking or chemical bonding, however for future development, the understanding of failure mechanisms between these materials is of high importance. In literature, various interfacial failures are reported which lead to adhesion loss between copper and epoxy resins. This review aims to give an overview on common coupling technologies and possible failure mechanisms. The information reviewed can in turn lead to the development of new strategies, enhancing the adhesion strength of copper/epoxy joints and, therefore, establishing a basis for future PCB manufacturing.

Polymer Competence Center Leoben GmbH

Using Hansen Space to Optimize Solvent Based Cleaning Processes for Manufacturing Electronic Assemblies.

Technical Library | 2009-07-09 17:23:07.0

Sometimes you just cannot clean with water. Good examples of this are: circuits with batteries attached, cleaning prior to encapsulation, ionic cleanliness testing, and non-sealed or other water sensitive parts. High impedance or high voltage circuits need to be cleaned of flux residues and other soils to maximize performance and reliability and, in these types of circuits; water can be just as detrimental as fluxes. When solvent cleaning is called for, Hansen solubility parameters can help target the best solvent or solvent blend to remove the residue of interest, and prevent degradation of the assembly being manufactured. In short, using this approach can time, manufacturing cost and reduce product liability.

Austin American Technology

Influence of Pd Thickness on Micro Void Formation of Solder Joints in ENEPIG Surface Finish

Technical Library | 2012-12-13 21:20:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. We investigated the micro-void formation of solder joints after reliability tests such as preconditioning (precon) and thermal cycle (TC) by varying the thickness of Palladium (Pd) in Electroless Nickel / Electroless Palladium / Immersion Gold (ENEPIG) surface finish. We used lead-free solder of Sn-1.2Ag-0.5Cu-Ni (LF35). We found multiple micro-voids of less than 10 µm line up within or above the intermetallic compound (IMC) layer. The number of micro-voids increased with the palladium (Pd) layer thickness. Our results revealed that the micro-void formation should be related to (Pd, Ni)Sn4 phase resulted from thick Pd layer. We propose that micro-voids may form due to either entrapping of volatile gas by (Pd, Ni)Sn4 or creeping of (Pd, Ni)Sn4.

Samsung Electro-Mechanics

Semi-Additive Process for Low Loss Build-Up Material in High Frequency Signal Transmission Substrates

Technical Library | 2018-04-18 23:55:01.0

Higher functionality, higher performance and higher reliability with smaller real estate are the mantras of any electronic device and the future guarantees more of the same. In order to achieve the requirements of these devices, designs must incorporate fine line and via pitch while maintain good circuitry adhesion at a smooth plating-resin interface to improve signal integrity. The Semi-Additive Process (SAP) is a production-proven method used on low dielectric loss tangent (Df) build-up materials that enables the manufacture of ultra-fine circuitry. (...) This paper will discuss a new SAP process for low loss build-up materials with low desmear roughness (Ra= 40-100 nm) and excellent adhesion (610-680 gf/cm) at various processing conditions. Along with the process flow, the current work will also present results and a discussion regarding characterization on the morphology and composition of resin and/or metal plating surfaces using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), surface roughness analysis, plating-resin adhesion evaluation from 90o peel tests

MacDermid Inc.

Proof is in the PTH - Assuring Via Reliability from Chip Carriers to Thick Printed Wiring Boards

Technical Library | 2007-06-06 15:25:30.0

Though today's microvias and high aspect plated through holes (PTH's) look nothing like the earliest through holes of 40 years ago, the PTH in its various forms remains the “weak link” and most critical element of printed wiring boards and laminate chip carriers (...) The paper outlines an approach to evaluating PTH reliability and quality that involves characterizing PTH life across a range of temperatures to reveal intricacies not seen by testing at a single delta-T, and certainly difficult to predict by modeling alone.

i3 Electronics

Understanding Circuit Material Performance Concerns for PCBs at Millimeter-Wave Frequencies

Technical Library | 2018-04-11 22:18:05.0

Millimeter-wave (mmWave) frequency applications are becoming more common. There are applications utilizing PCB technology at 60 GHz, 77 GHz and many other mmWave frequencies. When designing a PCB for mmWave frequency, the properties of the circuit materials need to be considered since they can be critical to the success of the application. Understanding the properties of circuit materials at these frequencies is very important.This paper will give an overview of which circuit material properties are important to mmWave frequency applications using PCBs. There will be data supplied which demonstrates why these properties are essential to the circuit material selection for mmWave applications. Some properties discussed will be dielectric constant (Dk) control, dissipation factor, moisture absorption, thickness control and TCDk (Temperature Coefficient of Dk). Measured comparisons will be shown for insertion loss and Dk versus frequency for different types of circuit materials up to 110 GHz. As part of the test data, the impact on circuit performance due to TCDk and moisture absorption will be shown at mmWave frequencies.

Rogers Corporation

Origin and Quantification of Increased Core Loss in MnZn Ferrite Plates of a Multi-Gap Inductor

Technical Library | 2019-11-07 08:59:14.0

Inductors realized with high permeable MnZn ferrite require, unlike iron-powder cores with an inherent dis-tributed gap, a discrete air gap in the magnetic circuit to prevent saturation of the core material and/or tune the inductance value. This large discrete gap can be divided into several partial gaps in order to reduce the air gap stray field and consequently the proximity losses in the winding. The multi-gap core, realized by stacking several thin ferrite plates and inserting a non-magnetic spacer material between the plates, however, exhibits a substan-tial increase in core losses which cannot be explained from the intrinsic properties of the ferrite. In this paper, a comprehensive overview of the scientific literature regarding machining induced core losses in ferrite, dating back to the early 1970s, is provided which suggests that the observed excess core losses could be attributed to a deterioration of ferrite properties in the surface layer of the plates caused by mechanical stress exerted during machining.

Power Electronic Systems Laboratory (PES)


in circuit test searches for Companies, Equipment, Machines, Suppliers & Information

Lewis & Clark
Lewis & Clark

Lewis and Clark is your #1 Pre-Owned Surface Mount and In-Circuit Test equipment supplier. We offer a variety of equipment solutions at a significant cost savings over new.

Manufacturer / Equipment Dealer / Broker / Auctions

18 Celina Ave., Unit 16
Nashua, NH USA

Phone: (603) 594-4229