Technical Library: in circuit testing (Page 13 of 17)

DOE for Process Validation Involving Numerous Assembly Materials and Test Methods.

Technical Library | 2010-03-18 14:02:03.0

Selecting products that have been qualified by industry standards for use in printed circuit board assembly processes is an accepted best practice. That products which have been qualified, when used in combinations not specifically qualified, may have resultant properties detrimental to assembly function though, is often not adequately understood. Printed circuit boards, solder masks, soldering materials (flux, paste, cored wire, rework flux, paste flux, etc.), adhesives, and inks, when qualified per industry standards, are qualified using very specific test methods which may not adequately mimic the assembly process ultimately used.

Trace Laboratories

IPC-CC-830B Versus the 'Real World'

Technical Library | 2016-09-22 17:52:59.0

Conformal Coatings are often used to increase the reliability of electronic assemblies operating in harsh or corrosive environments where the product would otherwise fail prematurely. Conformal coatings are often qualified to international standards, intended to enable users to better differentiate between suitable conformal coating chemistries, but always on a flat test coupon, which is not representative of real world use conditions. In order to better correlate international standards with real world-use conditions, three-dimensional Surface Insulation Resistance (SIR) test boards have been manufactured with dummy components representative of those commonly used on printed circuit assemblies...

Electrolube

Avoidance of Ceramic-Substrate-Based LED Chip Cracking Induced by PCB Bending or Flexing

Technical Library | 2022-09-25 20:18:33.0

Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.

Cree Lighting

Printed Circuit Board Recycling: Physicochemical And Economic Analysis Of Metals

Technical Library | 2022-01-05 23:20:33.0

This study aims to present the characterization of five different types of printed circuit boards (PCBs) for use in future recycling processes. PCBs used: motherboards, lead free motherboards, video cards, memory and printer cards. The comminution of the circuit boards was performed using blade mills and hammer mills with 9mm and 6mm meshes, respectively. Throughout the physical processing, analysis was made with stereoscopic optics to ensure that the correct materials had been released. The pre-magnetic separation parts were given a granulometric classification followed by acid digestion and loss on ignition tests.

Universidade de São Paulo

A Novel Authentication Methodology to Detect Counterfeit PCB Using PCB Trace-Based Ring Oscillator

Technical Library | 2021-10-12 18:01:49.0

The existence of counterfeit products, e.g., integrated circuits (ICs) and printed circuit boards (PCBs), in the modern semiconductor supply chain has seriously jeopardized the security and reliability of electronic systems, and has also caused the loss of suppliers' profit and reputation. Most of existing research papers prevent or detect counterfeit IC and PCB substrate separately, without testing the PCB as a whole, and often require the assistance of external equipment. In this article, a novel ring oscillator- based PCB authentication (ROPA) methodology to detect counterfeit PCB through supply chain is proposed, which ...

Beihang University

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

A Study on Effects of Copper Wrap Specifications on Printed Circuit Board Reliability

Technical Library | 2021-07-20 20:02:29.0

During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.

NASA Office Of Safety And Mission Assurance

Investigation of Impacts on Printed Circuit Board Laminated Composites Caused by Surface Finish Application

Technical Library | 2021-12-29 19:37:20.0

The purpose of this study was to compare the strength of the bond between resin and glass cloth for various composites (laminates) and its dependence on utilized soldering pad surface finishes. Moreover, the impact of surface finish application on the thermomechanical properties of the composites was evaluated. Three different laminates with various thermal endurances were included in the study. Soldering pads were covered with OSP and HASL surface finishes. The strength of the cohesion of the resin upper layer was examined utilizing a newly established method designed for pulling tests.

Czech Technical University in Prague

Reliability of Stacked Microvia

Technical Library | 2015-05-14 15:45:45.0

The Printed Circuit Board industry has seen a steady reduction in pitch from 1.0mm to 0.4mm; a segment of the industry is even using or considering a 0.25mm pitch. This has increased the use of stacked microvias in these designs. The process of stacking microvias has been practiced for several years in handheld devices; however, the devices generally do not operate in harsh conditions. Type 1 and Type 2 microvias have been tested over the years and have been found to be very reliable. We do not have enough test data for 3 and 4 stack microvias when placed on and off buried via. The main objective of this study was to understand the reliability of 3 and 4 stack microvias placed on and off a buried via.

Firan Technology Group

Reliable Young's Modulus Value of High Flexible, Treated Rolled Copper Foils Measured by Resonance Method

Technical Library | 2018-08-15 17:27:28.0

Smartphones and tablets require very high flexibility and severe bending performance ability of the flexible printed circuits (FPCs) to fit into their thinner and smaller body designs. In these FPCs, the extraordinary highly flexible, treated rolled-annealed (RA) copper foils have recently used instead of regular RA foil and electro deposited foils. It is very important to measure the Young's moduli of these foils predicting the mechanical properties of FPCs such as capabilities of fatigue endurance, folding, and so on. Even though the manufacturers use IPC TM-650 2.4.18.3 test method for measuring Young's modulus of copper foils over many years, where Young's modulus is calculated from the stress–strain (S–S) curve, it is quite difficult to obtain the accurate Young's modulus of metal foils by this test method.

JX Nippon Mining & Metals


in circuit testing searches for Companies, Equipment, Machines, Suppliers & Information

Midwest Circuit Technology
Midwest Circuit Technology

Midwest Circuit Technology provides Carbide Router Bits and End Milling Cuters for use in PCB Depaneling equipment. We have over 35 years of supplying tools and machining experience in drilling, Routing, Test Fixture manufacture.

Manufacturer / Distributor

114 Barrington Town Square
Aurora, OH USA

Phone: 13309956900

Void Free Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
Sell Used SMT & Test Equipment

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Voidless Reflow Soldering

High Throughput Reflow Oven
PCB Handling with CE

World's Best Reflow Oven Customizable for Unique Applications


"回流焊炉"