Technical Library: insufficient solder wave soldering (Page 6 of 6)

How to Use the Right Flux for the Selective Soldering Application

Technical Library | 2017-05-17 22:33:43.0

The selective soldering application requires a combination of performance attributes that traditional liquid fluxes designed for wave soldering applications cannot fulfill. First, the flux deposition on the board needs to be carefully controlled. Proper fine tuning of the flux physicochemical characteristics combined with a process optimization are mandatory to strike the right balance between solderability and reliability. However, localization of the flux residue through the drop jet process is not enough to guarantee the expected performance level. The flux needs to be designed to minimize the impact of unavoidable spreading and splashing events.From this perspective a fundamental understanding of the relationships between formulation and reliability is critical. In this application, thermal history of the flux residues (from room temperature to solder liquidus) is a key performance driver. Finally, it is necessary to conduct statistically designed experiments on industrial selective soldering machines in order to map the relationships between flux characteristics and selective process friendliness.

Kester

Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

Technical Library | 2021-06-15 18:36:00.0

To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology) production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 _m, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within _3%.

Jilin University

Enhanced X-Ray Inspection of Solder Joints in SMT Electronics Production using Convolutional Neural Networks

Technical Library | 2023-11-20 18:10:20.0

The electronics production is prone to a multitude of possible failures along the production process. Therefore, the manufacturing process of surface-mounted electronics devices (SMD) includes visual quality inspection processes for defect detection. The detection of certain error patterns like solder voids and head in pillow defects require radioscopic inspection. These high-end inspection machines, like the X-ray inspection, rely on static checking routines, programmed manually by the expert user of the machine, to verify the quality. The utilization of the implicit knowledge of domain expert(s), based on soldering guidelines, allows the evaluation of the quality. The distinctive dependence on the individual qualification significantly influences false call rates of the inbuilt computer vision routines. In this contribution, we present a novel framework for the automatic solder joint classification based on Convolutional Neural Networks (CNN), flexibly reclassifying insufficient X-ray inspection results. We utilize existing deep learning network architectures for a region of interest detection on 2D grayscale images. The comparison with product-related meta-data ensures the presence of relevant areas and results in a subsequent classification based on a CNN. Subsequent data augmentation ensures sufficient input features. The results indicate a significant reduction of the false call rate compared to commercial X-ray machines, combined with reduced product-related optimization iterations.

Siemens Process Industries and Drives

Divergence in Test Results Using IPC Standard SIR and Ionic Contamination Measurements

Technical Library | 2017-07-13 16:16:27.0

Controlled humidity and temperature controlled surface insulation resistance (SIR) measurements of flux covered test vehicles, subject to a direct current (D.C.) bias voltage are recognized by a number of global standards organizations as the preferred method to determine if no clean solder paste and wave soldering flux residues are suitable for reliable electronic assemblies. The IPC, Japanese Industry Standard (JIS), Deutsches Institut fur Normung (DIN) and International Electrical Commission (IEC) all have industry reviewed standards using similar variations of this measurement. (...) This study will compare the results from testing two solder pastes using the IPC-J-STD-004B, IPC TM-650 2.6.3.7 surface insulation resistance test, and IPC TM-650 2.3.25 in an attempt to investigate the correlation of ROSE methods as predictors of electronic assembly electrical reliability.

Alpha Assembly Solutions

The Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations the Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations

Technical Library | 2020-11-24 23:01:04.0

The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.

Indium Corporation

Partially-Activated Flux Residue Impacts on Electronic Assembly Reliabilities

Technical Library | 2016-12-29 15:37:51.0

The reliabilities of the flux residue of electronic assemblies and semiconductor packages are attracting more and more attention with the adoption of no-clean fluxes by majority of the industry. In recent years, the concern of "partially activated" flux residue and their influence on reliability have been significantly raised due to the miniaturization along with high density design trend, selective soldering process adoption, and the expanded use of pallets in wave soldering process. When flux residue becomes trapped under low stand-off devices, pallets or unsoldered areas (e.g. selective process), it may contain unevaporated solvent, "live" activators and metal complex intermediates with different chemical composition and concentration levels depending on the thermal profiles. These partially-activated residues can directly impact the corrosion, surface insulation and electrochemical migration of the final assembly. In this study, a few application tests were developed internally to understand this issue. Two traditional liquid flux and two newly developed fluxes were selected to build up the basic models. The preliminary results also provide a scientific approach to design highly reliable products with the goal to minimize the reliability risk for the complex PCB designs and assembly processes. This paper was originally published by SMTA in the Proceedings of SMTA International

Kester

Evaluation of No-Clean Flux Residues Remaining After Secondary Process Operations

Technical Library | 2023-04-17 17:05:47.0

In an ideal world, manufacturing devices would work all of the time, however, every company receives customer returns for a variety of reasons. If these returned parts contributed to a fail, most companies will perform failure analysis (FA) on the returned parts to determine the root cause of the failure. Failure can occur for a multitude of reasons, for example: wear out, fatigue, design issues, manufacturing flaw or defect. This information is then used to improve the overall quality of the product and prevent reoccurrence. If no defect is found, it is possible that in fact the product has no defect. On the other hand, the defect could be elusive and the FA techniques insufficient to detect said deficiency. No-clean flux residues can cause intermittent or elusive, hard to find defects. In an attempt to understand the effects of no-clean flux residues from the secondary soldering and cleaning processes, a matrix of varying process and cleaning operation was investigated. Of special interest, traveling flux residues and entrapped residues were examined, as well as localized and batch cleaning processes. Various techniques were employed to test the remaining residues in order to assess their propensity to cause a latent failure. These techniques include Surface Insulation Resistance1 (SIR) testing at 40⁰C/90% RH, 5 VDC bias along with C32 testing and Ion Exchange Chromatography (IC). These techniques facilitate the assessment of the capillary effect the tight spacing these component structures have when flux residues are present. It is expected that dendritic shorting and measurable current leakage will occur, indicating a failing SIR test. However, since the residue resides under the discrete components, there will be no visual evidence of dendritic growth or metal migration.

Foresite Inc.

Previous 1 2 3 4 5 6  

insufficient solder wave soldering searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
consignment program

Reflow Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

Software for SMT placement & AOI - Free Download.
convection smt reflow ovens

Best Reflow Oven
SMT spare parts

500+ original new CF081CR CN081CR FEEDER in stock