Technical Library: insufficient wetting qfn (Page 1 of 1)

Humitector™ Type 2 Non-Reversible Humidity Indicator Cards from Clariant help assure the integrity of moisture-sensitive surface-mount devices

Technical Library | 2021-02-20 00:55:47.0

Customers must be able to rely on accurate humidity indication as an assurance of SMD quality and fitness for processing and use. Without it, they might accept SMDs from suppliers that have already been irreparably damaged by moisture during storage or transit. Or, they might approve for processing SMDs that have been improperly or insufficiently heat-dried. Beyond the processing questions, there are financial questions: Where did the dry pack problems originate and who--supplier, customer, shipper--is financially responsible for the damaged SMDs? In response, Clariant, the originator of the color change humidity indicator card, and a member of the JEDEC's Subcommittee 14.1, "Reliability and Test Methods for Packaged Devices," created a new "non-reversible" halogen and cobalt dichloride free humidity indicator card. This HIC combines two reversible indicators (5% and 10%) with a new non-reversible (60% RH) indicator spot. (Figure 1) The 5% and 10% reversible spots work the way similar indicators do: they change color from blue (dry), to lavender, to pink (wet) to indicate humidity exposure at the indicated levels. If humidity levels drop, they will gradually revert back to blue.

Clariant Cargo & Device Protection

The Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations the Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations

Technical Library | 2020-11-24 23:01:04.0

The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.

Indium Corporation

A Novel Solution for No-Clean Flux not Fully Dried under Component Terminations

Technical Library | 2017-08-17 12:28:30.0

At SMT assembly, flux outgassing/drying is difficult for devices with poor venting channel, and resulted in insufficiently dried/burnt-off flux residue for no-clean process. Examples including: Large low stand-off components such as QFN, LGA Components covered under electromagnetic shield which has either no or few venting holes Components assembled within cavity of board Any other devices with small open space around solder joints

Indium Corporation

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Room Temperature Fast Flow Reworkable Underfill For LGA

Technical Library | 2016-10-03 08:28:47.0

With the miniaturization of electronic device, Land Grid Array (LGA) or QFN has been widely used in consumer electronic products. However there is only 20-30 microns gap left between LGA and the substrate, it is very difficult for capillary underfill to flow into the large LGA component at room temperature. Insufficient underfilling will lead to the loss of quality control and the poor reliability issue. In order to resolve these issues, a room temperature fast flow reworkable underfill has been successfully developed with excellent flowability. The underfill can flow into 20 microns gap and complete the flow of 15mm distance for about 30 seconds at room temperature. The curing behavior, storage, thermal cycling performance and reworkability will be discussed in details in this paper.

YINCAE Advanced Materials, LLC.

Wettable-Flanks: Enabler for the Use of Bottom-Termination Components in Mass Production of High-Reliability Electronic Control Units

Technical Library | 2018-05-23 12:12:43.0

Driven by miniaturization, cost reduction and tighter requirements for electrical and thermal performance, the use of lead-frame based bottom-termination components (LF-BTC) as small-outline no-leads (SON), quad-flat no leads (QFN) packages etc., is increasing. However, a major distractor for the use of such packages in high-reliability applications has been the lack of a visible solder (toe) fillet on the edge surface of the pins: because the post-package assembly singulation process typically leaves bare copper leadframe at the singulation edge, which is not protected against oxidation and thus does not easily solder-wet, a solder fillet (toe fillet) does not generally develop.

Robert Bosch LLC Automotive Electronics Division

An investigation into low temperature tin-bismuth and tin-bismuth-silver lead-free alloy solder pastes for electronics manufacturing applications

Technical Library | 2013-01-24 19:16:35.0

The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.

Christopher Associates Inc.

  1  

insufficient wetting qfn searches for Companies, Equipment, Machines, Suppliers & Information

Selective Soldering Nozzles

High Throughput Reflow Oven
Selective soldering solutions with Jade soldering machine

Training online, at your facility, or at one of our worldwide training centers"
IPC Training & Certification - Blackfox

World's Best Reflow Oven Customizable for Unique Applications
Voidless Reflow Soldering

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...