Technical Library: intermetalic layer (Page 1 of 2)

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2007-03-08 19:31:10.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force.

Henkel Electronic Materials

Intermetallic Growth in Tin-Rich Solders

Technical Library | 2017-06-13 17:14:59.0

For tin-rich solder alloys, 200 C (392 F) is an extreme temperature. Intermetallic growth in tin-copper systems is known to occur and is believed to bear a direct relationship to failure mechanisms. This study of morphological changes with time at elevated temperatures was made to determine growth rates of tin-copper intermetallics. Preferred growth directions, rates of thickening, and notable changes in morphology were observed.Each of four tin-base alloys was flowed on copper and exposed to temperatures between 100 C and 200 C for time periods of up to 32 days. Metallographic sections were taken and the intermetallics were examined. Intermetallic layer thickening is characterized by several distinct stages. The initial growth of side plates is extremely rapid and exaggerated. This is followed by retrogression (spheroidization) of the elongated peaks and by general thick-

General Electric

Testing Intermetallic Fragility on Enig upon Addition of Limitless Cu

Technical Library | 2014-01-23 16:49:55.0

As reliability requirements increase, especially for defense and aerospace applications, the need to characterize components used in electronic assembly also increases. OEM and EMS companies look to perform characterizations as early as possible in the process to be able to limit quality related issues and improve both assembly yields and ultimate device reliability. In terms of BGA devices, higher stress conditions, RoHS compatible materials and increased package densities tend to cause premature failures in intermetallic layers. Therefore it is necessary to have a quantitative and qualitative test methodology to address these interfaces.

Universal Instruments Corporation

Effects of Thermal Aging on Copper Dissolution For SAC 405 Alloy

Technical Library | 2010-07-08 19:49:59.0

Aging characteristics of new lead free solder alloys are in question by many experts because of higher amount of tin’s effect on the diffusion of other metals, primarily copper, to create undesirable boundary intermetallics over long periods of time and even moderately elevated temperatures. A primary layer of intermetallics, Cu6Sn5 forms as the liquid solder makes contact with the solid copper substrate. This reaction however ceases as the solder temperature falls below that of liquidus. A secondary intermetallic Cu3Sn1, an undesirable weak and brittle layer, is thought to form over time and may be accelerated by even mildly elevated temperatures in electronic modules such as laptops under power. This project was designed to quantify the growth rate of Cu3Sn1 over an extended period of time in a thermal environment similar to a laptop in the power on mode.

Radiance Technologies

Effect of Cooling Rate on the Intermetallic Layer in Solder Joints

Technical Library | 2013-02-28 17:14:36.0

While it has long been known that the Cu6Sn5 intermetallic that plays a critical role in the reliability of solder joints made with tin-containing alloys on copper substrates exists in two different crystal forms over the temperature range to which electronics circuitry is exposed during assembly and service, it has only recently been recognized that the change from one form to the other has implications for solder joint reliability. (..) In this paper the authors report a study of the effect of cooling rates on Cu6Sn5 crystals. Cooling rates from 200°C ranged from 10°C/minute to 100°C/minute and the effect of isothermal ageing at intermediate temperatures was also studied. The extent of the phase transformation after each regime was determined using synchrotron X-ray diffraction. The findings have important implications for the manufacture of solder joints and their in-service performance... First published in the 2012 IPC APEX EXPO technical conference proceedings....

Nihon Superior Co., Ltd.

Evaluating the Mechanical Reliability of Ball Grid Array (BGA) Flexible Surface-Mount Electronics Packaging under Isothermal Ageing

Technical Library | 2015-02-12 16:57:56.0

Electronic systems are known to be affected by the environmental and mechanical conditions, such as humidity, temperature, thermal shocks and vibration. These adverse environmental operating conditions, with time, could degrade the mechanical efficiency of the system and might lead to catastrophic failures.The aim of this study is to investigate the mechanical integrity of lead-free ball grid array (BGA) solder joints subjected to isothermal ageing at 150°C for up to 1000 hours. Upon ageing at 150°C the Sn-3.5Ag solder alloy initially age-softened for up to 200 hours. This behaviour was linked to the coarsening of grains. When aged beyond 200 hours the shear strength was found to increase up to 400 hours. This age-hardening was correlated with precipitation of hard Ag3Sn particles in Sn matrix. Further ageing resulted in gradual decrease in shear strength. This can be explained as the combined effect of precipitation coarsening and growth of intermetallic layer. The fractured surfaces of the broken solder balls were also investigated under a Scanning Electron Microscope. The shear failures were generally due to ductile fractures in bulk solders irrespective of the ageing time.

School of Engineering, University of Greenwich

Dissolution in Service of the Copper Substrate of Solder Joints

Technical Library | 2019-06-20 00:09:49.0

It is well known that during service the layer of Cu6Sn5 intermetallic at the interface between the solder and a Cu substrate grows but the usual concern has been that if this layer gets too thick it will be the brittleness of this intermetallic that will compromise the reliability of the joint, particularly in impact loading. There is another level of concern when the Cu-rich Cu3Sn phase starts to develop at the Cu6Sn5/Cu interface and an imbalance in the diffusion of atomic species, Sn and Cu, across that interface results in the formation at the Cu3Sn/Cu interface of Kirkendall voids, which can also compromise reliability in impact loading. However, when, as is the case in some microelectronics, the copper substrate is thin in relation to the volume of solder in the joint an overriding concern is that all of the Cu will be consumed by reaction with Sn to form these intermetallics.This paper reports an investigation into the kinetics of the growth of the interfacial intermetallic, and the consequent reduction in the thickness of the Cu substrate in solder joints made with three alloys, Sn-3.0Ag-0.5Cu, Sn-0.7Cu-0.05Ni and Sn-1.5Bi-0.7Cu-0.05Ni.

Nihon Superior Co., Ltd.

Influence of Pd Thickness on Micro Void Formation of Solder Joints in ENEPIG Surface Finish

Technical Library | 2012-12-13 21:20:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. We investigated the micro-void formation of solder joints after reliability tests such as preconditioning (precon) and thermal cycle (TC) by varying the thickness of Palladium (Pd) in Electroless Nickel / Electroless Palladium / Immersion Gold (ENEPIG) surface finish. We used lead-free solder of Sn-1.2Ag-0.5Cu-Ni (LF35). We found multiple micro-voids of less than 10 µm line up within or above the intermetallic compound (IMC) layer. The number of micro-voids increased with the palladium (Pd) layer thickness. Our results revealed that the micro-void formation should be related to (Pd, Ni)Sn4 phase resulted from thick Pd layer. We propose that micro-voids may form due to either entrapping of volatile gas by (Pd, Ni)Sn4 or creeping of (Pd, Ni)Sn4.

Samsung Electro-Mechanics

EFFECT OF PROCESS THERMAL HISTORY ON THE MICROSTRUCTURE OF COPPER PILLAR SnAg SOLDER JOINTS

Technical Library | 2024-06-23 21:57:16.0

Two extremes of reflow time scale for copper pillar flip chip solder joints were explored in this study. Sn-2.5Ag solder capped pillars were joined to laminate substrates using either conventional forced convection reflow or the controlled impingement of a defocused infrared laser. The laser reflow joining process was accomplished with an order of magnitude reduction in time above liquidus and a similar increase in solidification cooling rate. The brief reflow time and rapid cooling of a laser impingement reflow necessarily affects all time and temperature dependent phenomena characteristic of reflowed molten solder. These include second phase precipitate dissolution, base metal (copper) dissolution, and the extent of surface wetting. This study examines the reflow dependent microstructural aspects of flip chip Sn-Ag joints on samples of two different size scales, the first with copper pillars of 70μm diameter on 120μm pitch and the second with 23μm diameter pillars on a 40μm pitch. The length scale of Pb-free solder joints is known to affect the Sn grain solidification structure; Sn grain morphology will be noted across both reflow time and joint length scales. Sn grain morphology was further found to be dependent on the extent of surface wetting when such wetting circumvented the copper diffusion barrier layer. Microstructural analysis also will include a comparison of intermetallic structures formed; including the size and number density of second phase Ag3Sn precipitates in the joint and the morphology and thickness of the interfacial intermetallics formed on the pillar and substrate surfaces.

Binghamton University

  1 2 Next

intermetalic layer searches for Companies, Equipment, Machines, Suppliers & Information