Technical Library | 2019-07-24 23:55:32.0
Voiding is a key concern for components with thermal planes because interruptions in Z-axis continuity of the solder joint will hinder thermal transfer. When assembling components with solder paste, there is a high propensity for voiding due to the confined nature of the solder paste deposits under the component. Once reflowed, many factors contribute to the amount of voiding in a solder joint such as the reflow profile, designs of the component, board and stencil, and material factors. This study will focus on the solder paste alloy and flux combination as well as profile and board surface finishes.
Technical Library | 2009-07-22 18:33:41.0
This paper deals with the thermal effects of joule heating in a high interconnect density, thin core, buildup, organic flip chip substrate. The 440 μm thick substrate consists of a 135 μm thick core with via density of about 200 μm. The typical feature sizes in the substrate are 50 micron diameter vias is the core/buildup layers and 12 micron thick metal planes. An experimental test vehicle is powered with current and the temperature rise was measured. A numerical model was used to simulate the temperature rise in the TV.
Technical Library | 2016-04-21 14:10:55.0
The world of electronics continues to increase functional densities on products. One of the ways to increase density of a product is to utilize more of the 3 dimensional spaces available. Traditional printed circuit boards utilize the x/y plane and many miniaturization techniques apply to the x/y space savings, such as smaller components, finer pitches, and closer component to component distances.This paper will explore the evolution of 3D assembly techniques, starting from flexible circuit technology, cavity assembly, embedded technology, 3 dimensional surface mount assembly, etc.
Technical Library | 2017-05-04 17:35:01.0
Most of today's printed circuit board base materials are anisotropic and it is not possible to use a simple method to measure thermal conductivity along the different axis, especially when a good accuracy is expected. Few base material suppliers' datasheet show X, Y and Z thermal conductivities. In most cases, a single value is given, moreover determined with a generic methodology, and not necessarily adapted to the reality of glass-reinforced composites with a strong anisotropy.After reminding of the fundamentals in thermal science, this paper gives an overview of the state-of the art in terms of thermal conductivity measurement on PCB base materials, and some typical values. It finally proposes an innovative method called transient fin method, and associated test sample, to perform reliable and consistent in plane thermal conductivity measurement on anisotropic PCB base materials.
Technical Library | 2009-04-30 18:06:24.0
This presentation surveys the most significant via and via-related laminate failure mechanisms from past to present using data from current induced thermal cycling (CITC) testing, failure analysis, and other sources. The relative life and failure modes of thru vias, buried vias, and microvias (stacked vs. non-stacked) are compared, along with the affect of structure, materials, and peak temperatures on the above. The origin of via-induced laminate failures such as "eyebrow cracks" and Pb free related internal delamination is also explored.
Technical Library | 2019-05-15 22:26:02.0
As the demand for higher routing density and transfer speed increases, Via-In-Pad Plated Over (VIPPO) has become more common on high-end telecommunications products. The interactions of VIPPO with other features used on a PCB such as the traditional dog-bone pad design could induce solder joints to separate during the second and thereafter reflows. The failure has been successfully reproduced, and the typical failure signature of a joint separation has been summarized.To better understand the solder separation mechanism, this study focuses on designing a test vehicle to address the following three perspectives: PCB material properties, specifically the Z-direction or out-of-plane Coefficient of Thermal Expansion (CTE); PCB thickness and back drill depth; and quantification of the driving force magnitude beyond which the separation is due to occur.
Technical Library | 2024-09-02 17:31:09.0
The cracking and delamination of printed circuit boards (PCB) during exposure to elevated thermal exposure, such as reflow and rework, have always been a concern for the electronics industry. However, with the increasing spread of Pb-free assembly into industries with lower volume and higher complexity, the occurrence of these events is increasing in frequency. Several telecom and enterprise original equipment manufacturers (OEMs) have reported that the robustness of their PCBs is their number one concern during the transition from SnPb to Pb-free product. Cracking and delamination within PCBs can be cohesive or adhesive in nature and can occur within the weave, along the weave, or at the copper/epoxy interface (see Figure 1). The particular role of moisture absorption and other PCB material properties, such as out of plane expansion on this phenomenon is still being debated.
Technical Library | 2024-10-26 06:26:24.0
Copper pour is an essential design element in printed circuit boards (PCBs) that enhances thermal management, signal integrity, and electrical grounding. It involves filling unused areas on the board with copper, connecting them to power or ground planes. This feature helps manage heat dissipation, minimizes electromagnetic interference (EMI), and provides stable electrical grounding for complex circuits. While copper pour offers significant benefits, improper implementation may lead to manufacturing challenges like warping or soldering difficulties. This article explores the advantages of copper pour, the potential challenges, and how PCB Power integrates this design feature to optimize performance and durability. With advanced manufacturing processes, PCB Power ensures seamless copper pour integration for prototypes and large-scale production, offering turnkey PCB solutions for various industries.
Technical Library | 2021-09-08 14:10:12.0
The Pb-Free Alloy Characterization Program sponsored by International Electronics Manufacturing Initiative (iNEMI) is conducting an extensive investigation using accelerated temperature cycling (ATC) to evaluate ball grid array (BGA) thermal fatigue performance of 12 commercial or developmental Sn based Pb-free solder alloys. This paper presents the initial findings from a specific subset of the temperature cycling test matrix. The focus is on comparing alloy performance for two of the most commonly specified temperature cycles, 0 to 100 °C and -40 to 125 °C.
Technical Library | 2021-09-08 14:03:55.0
There is need in the industry to understand the effects of silver presence in solders from various applications perspective. This article will attempt to present a review of the key published results on the silver containing alloys along with results of our internal studies on wave soldering, surface mount and BGA/CSP applications. Advantages and disadvantages of silver at different levels will be discussed. Specifically this report will focus on the effect of silver on process conditions, drop shock resistance, solder joint survivability in high strain rate situations, thermal fatigue resistance, Cu dissolution and effects of silver in combination with other alloy additives. Specific application problems demanding high silver level and other requiring silver level to the minimum will be discussed.