Technical Library | 2023-01-17 17:22:28.0
The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.
Technical Library | 2019-10-16 23:18:15.0
Despite being a continuous subject of discussion, the existence of voids and their effect on solder joint reliability has always been controversial. In this work we revisit previous works on the various types of voids, their origins and their effect on thermo-mechanical properties of solder joints. We focus on macro voids, intermetallics micro voids, and shrinkage voids, which result from solder paste and alloy characteristics. We compare results from the literature to our own experimental data, and use fatigue-crack initiation and propagation theory to support our findings. Through a series of examples, we show that size and location of macro voids are not the primary factor affecting solder joint mechanical and thermal fatigue life. Indeed, we observe that when these voids area conforms to the IPC-A-610 (D or F) or IPC-7095A standards, macro voids do not have any significant effect on thermal cycling or drop shock performance.
Technical Library | 2013-03-21 21:24:49.0
This paper explores the behaviour of a copper test vehicle with multiple reflowed solder joints, which has direct relevance to ball grid arrays (BGA) and high density interconnect structures. The paper explores the relative stress conditions on the distributed joints and the sensitivity to ball joint shape... First published in the 2012 IPC APEX EXPO technical conference proceedings
Technical Library | 2015-08-13 15:52:40.0
Pad cratering has become more prevalent with the switch to lead free solders and lead free compatible laminates. This mainly is due to the use of higher reflow temperature, stiffer Pb-free solder alloys, and the more brittle Pb-free compatible laminates. However, pad cratering is difficult to detect by monitoring electric resistance since pad cratering initiates before an electrical failure occurs. Several methods have been developed to evaluate laminate materials' resistance to pad cratering. Pad-solder level tests include ball shear, ball pull and pin pull. The detailed methods for ball shear, ball pull, and pin pull testing are documented in an industry standard IPC-9708. Bansal, et al. proposed to use acoustic emission (AE) sensors to detect pad cratering during four-point bend test. Currently there is an industry-working group working on test guidelines for acoustic emission measurement during mechanical testing.
Technical Library | 2020-10-27 02:07:31.0
For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.
1 |
IPC is the trade association for the printed wiring board and electronics assembly industries.
Training Provider / Events Organizer / Association / Non-Profit
3000 Lakeside Drive, 309 S
Bannockburn, IL USA
Phone: 847-615-7100