Technical Library: kester thin lead (Page 1 of 1)

Tin Whiskers: Risks with Lead Free | Part I

Technical Library | 2019-06-19 11:06:46.0

Tin (Sn) metal displays the characteristic of growing “tin whiskers” from pure tin coatings (most actively on relatively thin, electrodeposited or immersion tin coatings), usually months or years from the initial deposition of the tin. Tin whiskers are electrically conductive, filamentary, single crystals of white (beta phase) tin. These filaments of single crystal tin are usually one to five microns in diameter, and a few microns up to several tens of millimeters long, that grow spontaneously from the tin coatings. Alloying additions of several percent (by weight) of lead (Pb) prevents these electrically conductive tin whiskers from growing. Pb alloyed into the Sn was discovered to prevent the occurrence of tin whiskers in electronic assemblies in the 1950s as the Bell Laboratories solution to the problem of tin whiskers. The alloying of the tin with lead has thus quietly averted incalculable losses from short circuits in electronic equipment for the last 60 years.

ACI Technologies, Inc.

Developing a Reliable Lead-free SMT Process

Technical Library | 2008-01-03 17:50:51.0

Lead-free SMT can be achieved reliably if several process requirements are implemented carefully. Some of the variables to account for are listed below. The most common alloys used in lead-free SMT are tin-silver-copper alloys; these alloys all have a meting range between 217- 220°C. These alloys all melt at higher temperatures than traditional leaded solders such as the 63/37which has a melting point of 183 °C.

Kester

Lead-free Wave Soldering of Simple to Highly Complex Boards. Process Optimization

Technical Library | 2008-01-10 19:24:48.0

This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.

Vitronics Soltec

Voiding Control for QFN Assembly

Technical Library | 2011-04-07 14:50:29.0

Quad Flat No Leads (QFN) package designs receive more and more attention in electronic industry nowadays. This package offers a number of benefits including (1) small size, such as a near die-sized footprint, thin profile, and light weight; (2) easy PCB t

Indium Corporation

Recommendations for Board Assembly of Infineon Thin Small Discrete Packages without Leads

Technical Library | 2021-04-01 14:36:51.0

This document provides information about the Surface Mount Technology (SMT) board assembly of Infineon Thin Small Non-leaded Packages (TSNP). The specific dimensions of the leadframe based inner setup depend on the size of the chip and the type of bonding. The field of application ranges from linear voltage regulators for weight-limited applications such as cellular phones and digital cameras to linear voltage regulators for the automotive sector.

Infineon Technologies AG

Failure Modes in Wire bonded and Flip Chip Packages

Technical Library | 2014-12-11 18:00:09.0

The growth of portable and wireless products is driving the miniaturization of packages resulting in the development of many types of thin form factor packages and cost effective assembly processes. Wire bonded packages using conventional copper lead frame have been used in industry for quite some time. However, the demand for consumer electronics is driving the need for flip chip interconnects as these packages shorten the signals, reduce inductance and improve functionality as compared to the wire bonded packages. The flip chip packages have solder bumps as interconnects instead of wire bonds and typically use an interposer or organic substrate instead of a metal lead frame (...) The paper provides a general overview of typical defects and failure modes seen in package assembly and reviews the efforts needed to understand new failure modes during package assembly. The root cause evaluations and lessons learned as the factory transitioned to thin form factor packages are shared

Peregrine Semiconductor

Creating Solder Joint Reliability with SnCu Based Solders Some Practical Experiences

Technical Library | 2009-01-15 00:42:58.0

Tin-silver-copper has received much publicity in recent years as the lead-free solder of choice. SAC305 was endorsed by the IPC Solder Value Product Council in the United States as the preferred option for SMT assembly; most assemblers have transitioned to this alloy for their solder paste requirements. The SAC305 alloy due to its 3.0% content of silver is expensive when compared to traditional 63/37 for this reason many wave assemblers are opting for less costly options such as tin-copper based solders for their wave, selective and dip tinning operations.

Kester

Copper/Epoxy Joints in Printed Circuit Boards: Manufacturing and Interfacial Failure Mechanisms

Technical Library | 2020-01-09 00:00:30.0

PCBs have a wide range of applications in electronics where they are used for electric signal transfer. For a multilayer build-up, thin copper foils are alternated with epoxy-based prepregs and laminated to each other. Adhesion between copper and epoxy composites is achieved by technologies based on mechanical interlocking or chemical bonding, however for future development, the understanding of failure mechanisms between these materials is of high importance. In literature, various interfacial failures are reported which lead to adhesion loss between copper and epoxy resins. This review aims to give an overview on common coupling technologies and possible failure mechanisms. The information reviewed can in turn lead to the development of new strategies, enhancing the adhesion strength of copper/epoxy joints and, therefore, establishing a basis for future PCB manufacturing.

Polymer Competence Center Leoben GmbH

Creep Corrosion of PWB Final Finishes: Its Cause and Prevention

Technical Library | 2021-04-08 00:30:49.0

As the electronic industry moves to lead-free assembly and finer-pitch circuits, widely used printed wiring board (PWB) finish, SnPb HASL, has been replaced with lead-free and coplanar PWB finishes such as OSP, ImAg, ENIG, and ImSn. While SnPb HASL offers excellent corrosion protection of the underlying copper due to its thick coating and inherent corrosion resistance, the lead-free board finishes provide reduced corrosion protection to the underlying copper due to their very thin coating. For ImAg, the coating material itself can also corrode in more aggressive environments. This is an issue for products deployed in environments with high levels of sulfur containing pollutants encountered in the current global market. In those corrosive environments, creep corrosion has been observed and led to product failures in very short service life (1-5 years). Creep corrosion failures within one year of product deployment have also been reported. This has prompted an industry-wide effort to understand creep corrosion

Alcatel-Lucent

Stencil Print solutions for Advance Packaging Applications

Technical Library | 2023-07-25 16:25:56.0

This paper address two significant applications of stencils in advance packaging field: 1. Ultra-Thin stencils for miniature component (0201m) assembly; 2. Deep Cavity stencils for embedded (open cavity) packaging. As the world of electronics continues to evolve with focus on smaller, lighter, faster, and feature-enhanced high- performing electronic products, so are the requirement for complex stencils to assemble such components. These stencil thicknesses start from less than 25um with apertures as small as 60um (or less). Step stencils are used when varying stencil thicknesses are required to print into cavities or on elevated surfaces or to provide relief for certain features on a board. In the early days of SMT assembly, step stencils were used to reduce the stencil thickness for 25 mil pitch leaded device apertures. Thick metal stencils that have both relief-etch pockets and reservoir step pockets are very useful for paste reservoir printing. Electroform Step-Up Stencils for ceramic BGA's and RF Shields are a good solution to achieve additional solder paste height on the pads of these components as well as providing exceptional paste transfer for smaller components like uBGAs and 0201s. As the components are getting smaller, for example 0201m, or as the available real estate for component placement on a board is getting smaller – finer is the aperture size and the pitch on the stencils. Aggressive distances from step wall to aperture are also required. Ultra-thin stencils with thicknesses in the order of 15um-40um with steps of 15um are used to obtain desired print volumes. Stencils with thickness to this order can be potential tools even to print for RDLs in the package.

Photo Stencil LLC

  1  

kester thin lead searches for Companies, Equipment, Machines, Suppliers & Information

Void Free Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
Selective Soldering Nozzles

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Voidless Reflow Soldering

High Throughput Reflow Oven
PCB Handling with CE

World's Best Reflow Oven Customizable for Unique Applications


"回流焊炉"