Technical Library: lane

New BGA Solder Mask Repair Technique Using Laser Cut Stencils

Technical Library | 2007-02-01 10:08:40.0

The increased replacement of high lead count SMT devices with BGAs and other high ball count area array packages has brought increased challenges to PCB rework and repair. Often solder mask areas surrounding BGA pad areas are damaged when components are removed.

BEST Inc.

Electroformed vs. Laser-cut: A Stencil Performance Study

Technical Library | 2013-01-11 16:51:33.0

There have been claims in the industry that laser-cut electroformed nickel foil blanks provide stencil print performance comparable to electroformed stencils. A study was established to measure the quantitative differences in performance between the two during an independent lab study.

Photo Stencil LLC

Evaluation of Stencil Foil Materials, Suppliers and Coatings

Technical Library | 2011-12-08 17:46:42.0

The past few years have brought PCB assemblers a multitude of choices for SMT stencil materials and coatings. In addition to the traditional laser-cut stainless steel (SS) or electroformed nickel, choices now include SS that has been optimized for laser c

Shea Engineering Services

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

Challenges for Step Stencils with Design Guidelines for Solder Paste Printing

Technical Library | 2015-08-25 13:51:27.0

The stencil printing process is one of the most critical processes in the electronic production. Due to the requirement: "faster and smaller" it is necessary to place components with different paste volume close together without regard to solder paste printing. In our days it is no longer possible to control the solder paste volume only by adjustment of the aperture dimensions. The requirements of solder paste volumes for specific components are realized by different thicknesses of metal sheets in one stencil with so called step stencils. The step-down stencil is required when it is desirable to print fine-pitch devices using a thinner stencil foil, but print other devices using a thicker stencil foil. The paper presents the innovative technology of step-up and step-down stencils in a laser cutting and laser welding process. The step-up/step-down stencil is a special development for the adjustment of solder paste quantity, fulfilling the needs of placement and soldering. This includes the laser cutting and laser welding process as well as the resulting stencil characteristics and the potential of the printing process.

LaserJob

Compatibility of Cleaning Agents With Nano-Coated Stencils

Technical Library | 2013-03-12 13:25:18.0

High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils

KYZEN Corporation

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Low Surface Energy Coatings Rewrites the Area Ratio Rules

Technical Library | 2013-06-20 14:33:12.0

With today's consumer technologies driving the need for denser and more compact devices, the assembly process for surface mounted devices has becoming increasingly more difficult. With the mixture of components requiring a broader range of print deposition volume, various techniques are in use in an attempt to ensure consistent and appropriate paste volume is achieved. Some of these techniques include step etching a stencil locally on a targeted device, promoting electroformed smooth wall nickel stencils, through to laser cutting newer grade stencil materials. This paper focuses on the relevant attributes that affect the properties of solder paste release and introduces the effects of surface free energy with respect to key elements that make up the stencil printing process.

Assembly Process Technologies LLC

Stencil Options for Printing Solder Paste for .3 Mm CSP's and 01005 Chip Components

Technical Library | 2023-07-25 16:42:54.0

Printing solder paste for very small components like .3mm pitch CSP's and 01005 Chip Components is a challenge for the printing process when other larger components like RF shields, SMT Connectors, and large chip or resistor components are also present on the PCB. The smaller components require a stencil thickness typically of 3 mils (75u) to keep the Area Ratio greater than .55 for good paste transfer efficiency. The larger components require either more solder paste height or volume, thus a stencil thickness in the range of 4 to 5 mils (100 to 125u). This paper will explore two stencil solutions to solve this dilemma. The first is a "Two Print Stencil" option where the small component apertures are printed with a thin stencil and the larger components with a thicker stencil with relief pockets for the first print. Successful prints with Keep-Outs as small as 15 mils (400u) will be demonstrated. The second solution is a stencil technology that will provide good paste transfer efficiency for Area Ratio's below .5. In this case a thicker stencil can be utilized to print all components. Paste transfer results for several different stencil types including Laser-Cut Fine Grain stainless steel, Laser-Cut stainless steel with and w/o PTFE Teflon coating, AMTX E-FAB with and w/o PTFE coating for Area Ratios ranging from .4 up to .69.

Photo Stencil LLC

Effect of Nano-Coated Stencil on 01005 Printing

Technical Library | 2021-11-17 18:53:50.0

The demand for product miniaturization, especially in the handheld device area, continues to challenge the board assembly industry. The desire to incorporate more functionality while making the product smaller continues to push board design to its limit. It is not uncommon to find boards with castle-like components right next to miniature components. This type of board poses a special challenge to the board assemblers as it requires a wide range of paste volume to satisfy both small and large components. One way to address the printing challenge is to use creative stencil design to meet the solder paste requirement for both large and small components. ... The most important attribute of a stencil is its release characteristic. In other words, how well the paste releases from the aperture. The paste release, in turn, depends on the surface characteristics of the aperture wall and stencil foil. The recent introduction of new technology, nano-coating for both stencil and squeegee blades, has drawn the attention of many researchers. As the name implies, nano-coated stencils and blades are made by a conventional method such as laser-cut or electroformed then coated with nano-functional material to alter the surface characteristics. This study will evaluate nano-coated stencils for passive component printing, including 01005.

Speedline Technologies, Inc.

  1  

lane,taking stencil laser cut searches for Companies, Equipment, Machines, Suppliers & Information

See Your 2024 IPC Certification Training Schedule for Eptac

High Precision Fluid Dispensers
PCB Handling with CE

High Throughput Reflow Oven
Solder Paste Dispensing

Best Reflow Oven
High Throughput Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications


Internet marketing services for manufacturing companies