Technical Library: lead and free and profiler (Page 1 of 4)

High Reliability and High Temperature Application Solution - Solder Joint Encapsulant Paste

Technical Library | 2017-10-16 15:03:32.0

The miniaturization and advancement of electronic devices have been the driving force of design, research and development, and manufacturing in the electronic industry. However, there are some issues occurred associated with the miniaturization, for examples, warpage and reliability issues. In order to resolve these issues, a lot of research and development have been conducted in the industry and university with the target of moderate melting temperature solder alloys such as m.p. 280°C. These moderate temperature alloys have not resolve these issues yet due to the various limitations. YINCAE has been working on research and development of the materials with lower temperature soldering for higher temperature application. To meet this demand, YINCAE has developed solder joint encapsulant paste to enhance solder joint strength resulting in improving drop and thermal cycling performance to eliminate underfilling, edge bonding or corner bonding process in the board level assembly process. This solder joint encapsulant paste can be used in typical lead-free profile and after reflow the application temperature can be up to over 300C, therefore it also eliminates red glue for double side reflow process. In this paper, we will discuss the reliability such as strength of solder joints, drop test performance and thermal cycling performance using this solder joint encapsulant paste in detail.

YINCAE Advanced Materials, LLC.

The Effects of Silver Content and Solidification Profile on the Anand Constitutive Model for SAC Lead Free Solders

Technical Library | 2023-06-14 01:09:26.0

In the electronic packaging industry, it is important to be able to make accurate predictions of board level solder joint reliability during thermal cycling exposures. The Anand viscoelastic constitutive model is often used to represent the material behavior of the solder in finite element simulations. This model is defined using nine material parameters, and the reliability prediction results are often highly sensitive to the Anand parameters. In this work, an investigation on the Anand constitutive model and its application to SAC solders of various Ag contents (i.e. SACN05, with N = 1, 2, 3, 4) has been performed. For each alloy, both water quenched (WQ) and reflowed (RF) solidification profiles were utilized to establish two unique specimen microstructures, and the same reflow profile was used for all four of the SAC alloys so that the results could be compared and the effects of Ag content could be studied systematically.

Auburn University

Analysis of the Mechanical Behavior, Microstructure, and Reliability of Mixed Formulation Solder Joints

Technical Library | 2023-09-26 19:14:44.0

The transition from tin-lead to lead free soldering in the electronics manufacturing industry has been in progress for the past 10 years. In the interim period before lead free assemblies are uniformly accepted, mixed formulation solder joints are becoming commonplace in electronic assemblies. For example, area array components (BGA/CSP) are frequently available only with lead free Sn-Ag-Cu (SAC) solder balls. Such parts are often assembled to printed circuit boards using traditional 63Sn-37Pb solder paste. The resulting solder joints contain unusual quaternary alloys of Sn, Ag, Cu, and Pb. In addition, the alloy composition can vary across the solder joint based on the paste to ball solder volumes and the reflow profile utilized. The mechanical and physical properties of such Sn-Ag-Cu-Pb alloys have not been explored extensively in the literature. In addition, the reliability of mixed formulation solder joints is poorly understood.

Auburn University

Thermal Shock and Drop Test Performance of Lead-free Assemblies with No-Underfill and Corner-Underfill

Technical Library | 2014-01-02 15:56:55.0

With ROHS compliance the transition to lead-free is inevitable. Several lead-free alloys are available in the market and its reliability has been the main concern. The results from this experimental research aims at making a comparison of different lead-free alloy combinations. Thermal shock and drop tests are a part of this experimental study.

Jet Propulsion Laboratory

Lead-free and Tin-lead Assembly and Reliability of Fine-pitch Wafer-Level CSPs

Technical Library | 2007-05-31 19:05:55.0

This paper discusses solder paste printing and flux dipping assembly processes for 0.4 and 0.5mm pitch lead-free WLCSPs and the corresponding assembly results and thermal cyclic reliability obtained. Variables evaluated include reflow ambient, paste type, and stencil design. Reliability is also compared to results for the same components assembled under identical conditions using SnPb solder.

Universal Instruments Corporation

Assembly and Rework of Lead Free Package on Package Technology

Technical Library | 2012-03-22 20:40:01.0

Miniaturization continues to be a driving force in both integrated circuit packaging and printed circuit board laminate technology. In addition to decreasing component pitch (lead to lead spacing), utilization of the vertical space by stacking packages ha

Electronics

The Conditions and Solutions of Lead-free Hand Soldering

Technical Library | 2013-01-05 22:21:01.0

More and more countries legislate to forbib lead usage in solder material. However, the lead-free solder wire has higher melting point and soldering temperature, increase soldering iron temperature may damage the PCB or components. How to solve this problem?

Leisto Industrial Co., Limited

Liquid Tin Corrosion and Lead Free Wave Soldering

Technical Library | 2008-02-12 22:52:41.0

Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.

Speedline Technologies, Inc.

Vapor Phase Technology and its Application

Technical Library | 2013-03-27 23:43:40.0

Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.

A-Tek Systems Group LLC

Reliability of ENEPIG by Sequential Thermal Cycling and Aging

Technical Library | 2019-04-17 21:29:14.0

Electroless nickel electroless palladium immersion gold (ENEPIG) surface finish for printed circuit board (PCB) has now become a key surface finish that is used for both tin-lead and lead-free solder assemblies. This paper presents the reliability of land grid array (LGA) component packages with 1156 pads assembled with tin-lead solder onto PCBs with an ENEPIG finish and then subjected to thermal cycling and then isothermal aging.

Jet Propulsion Laboratory

  1 2 3 4 Next

lead and free and profiler searches for Companies, Equipment, Machines, Suppliers & Information