Technical Library: lead free profiler (Page 6 of 16)

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications

Technical Library | 2019-01-09 19:19:52.0

The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.

Koki Company LTD

Stencil Design for Lead-Free SMT Assembly

Technical Library | 2018-03-05 11:17:31.0

In order to comply with RoHS and WEEE directives, many circuit assemblers are transitioning some or all of their soldering processes from tin-lead to lead-free within the upcoming year. There are no drop-in replacement alloys for tin-lead solder, which is driving a fundamental technology change. This change is forcing manufacturers to take a closer look at everything associated with the assembly process: board and component materials, logistics and materials management, solder alloys and processing chemistries, and even soldering methods. Do not expect a dramatic change in soldering behavior when moving to lead-free solders. The melting points of the alloys are higher, but at molten temperatures the different alloys show similar behaviors in a number of respects. Expect subtler changes, especially near the edges of a process window that is assumed based on tin-lead experience rather than defined through lead-free experimentation. These small changes, many of them yet to be identified and understood, will manifest themselves with lower assembly yields. The key to keeping yields up during the transition to lead-free is quickly learning what and where the subtle distinctions are, and tuning the process to accommodate them.

Cookson Electronics

Lead-free Wave Soldering of Simple to Highly Complex Boards. Process Optimization

Technical Library | 2008-01-10 19:24:48.0

This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.

Vitronics Soltec

Liquid Tin Corrosion and Lead Free Wave Soldering

Technical Library | 2008-02-12 22:52:41.0

Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.

Speedline Technologies, Inc.

Lead-Free Reliability - Building It Right The First Time

Technical Library | 2008-07-01 18:59:09.0

As lead-free and RoHS compliancy fast approaches, it is more important than ever to build it right the first time. Lead-free assembly and RoHS will bring about numerous changes and the number of variables with which to contend is increasing, creating increased risk of defects and reduced product reliability. However, understanding what the variables are and their impact on the assembly can great increase product reliability.

Kester

Effect of Contact Time on Lead-Free Wave Soldering

Technical Library | 2008-08-28 22:50:11.0

The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.

Speedline Technologies, Inc.

Soldering of SMD Film Capacitors in Practical Lead Free Processes

Technical Library | 2009-06-02 23:53:18.0

Today the lead free soldering process is a must in commercial electronics and it is also coming more and more important in automative and industrial electronics sectors in the near future. The most common choices for lead free solders are different Tin-Solder-Copper (SAC) alloys. Processes using SAC solders cause extra stress, because of increased process temperatures, especially to the plastic materials.

KEMET Electronics Corporation

Lead-Free Soldering Guide

Technical Library | 2014-05-12 15:32:17.0

The issue of lead-free soldering has piqued a great deal of interest in the electronics assembly industry as of late. What was once an issue that seemed too far away to worry about has become a pressing reality. In order to avoid confusion, last minute panic, and a misunderstanding of how the issue of lead-free soldering will affect the industry and individuals users of solders, it is necessary for all suppliers and assemblers to become educated in this matter.

AIM Solder

Sample Preparation For Mitigating Tin Whiskers In Alternative Lead-Free Alloys

Technical Library | 2016-02-18 18:55:09.0

As lead-free alloys shift into high reliability electronics, the issue of tin whisker growth remains a primary concern among those in the industry. Current research shows that there is no perfect alloy for all cases of electronic usage. Industry leaders and researchers continue to study and search for a lead free alloy that is able to withstand harsh environments while maintaining high reliability.

AIM Solder

Hand Soldering with Lead Free Alloys

Technical Library | 2018-02-22 10:56:36.0

As companies start to implement lead free soldering processes, hand soldering and associated techniques have been identified as key functions in the manufacturing process requiring additional research and development. Hand soldering tends to occur at the end of the process line where the circuit board has a high intrinsic value and so correct process control will have a significant affect on manufacturing costs and productivity.This paper discusses the fundamental aspects of the hand soldering process and discusses process adaptation requirements for successful lead free implementation.

Metcal


lead free profiler searches for Companies, Equipment, Machines, Suppliers & Information

One stop service for all SMT and PCB needs

High Resolution Fast Speed Industrial Cameras.
Voidless Reflow Soldering

High Throughput Reflow Oven
Void Free Reflow Soldering

World's Best Reflow Oven Customizable for Unique Applications


"回流焊炉"