Technical Library: lead free rework equipment (Page 1 of 4)

Are You Ready for Lead Free

Technical Library | 2023-01-17 17:37:45.0

Various international market trends drive electronics manufacturers and their mate- rials and equipment suppliers to develop new assembly techniques to reduce the industry's environmental impact. Two pri- mary forces in this drive are the movements to lead-free assembly and ISO 14000 cer- tification. In response to these factors, reflow technology advances are enabling manufacturers to meet or anticipate the new environmental mandates.

Heller Industries Inc.

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Lead-Free Risk Mitigation -- A Case Study

Technical Library | 2020-07-01 19:45:04.0

A company approached ACI Technologies (ACI) for assistance with a new product that was about to undergo its initial proof-of-concept prototype build. This product was an item that was being furnished to the Department of Defense for a program designed to increase the technical capabilities of computer equipment issued to the war fighter. The requirements for this item specified the use of tin-lead solder during assembly of production units. One of the main responsibilities for ACI during this project was to assist the client in mitigating the risk introduced using commercial off-the-shelf materials that may be lead-free.

ACI Technologies, Inc.

Tin Whiskers: Risks with Lead Free | Part I

Technical Library | 2019-06-19 11:06:46.0

Tin (Sn) metal displays the characteristic of growing “tin whiskers” from pure tin coatings (most actively on relatively thin, electrodeposited or immersion tin coatings), usually months or years from the initial deposition of the tin. Tin whiskers are electrically conductive, filamentary, single crystals of white (beta phase) tin. These filaments of single crystal tin are usually one to five microns in diameter, and a few microns up to several tens of millimeters long, that grow spontaneously from the tin coatings. Alloying additions of several percent (by weight) of lead (Pb) prevents these electrically conductive tin whiskers from growing. Pb alloyed into the Sn was discovered to prevent the occurrence of tin whiskers in electronic assemblies in the 1950s as the Bell Laboratories solution to the problem of tin whiskers. The alloying of the tin with lead has thus quietly averted incalculable losses from short circuits in electronic equipment for the last 60 years.

ACI Technologies, Inc.

Understanding In-Circuit Testing (ICT) with PCBA ICT Testing Machine

Technical Library | 2023-11-14 02:36:41.0

Understanding In-Circuit Testing (ICT) with PCBA ICT Testing Machine In-Circuit Testing, commonly known as ICT, stands as a sophisticated and precise method within electronics manufacturing. It serves to evaluate the functionality and integrity of individual electronic components on a Printed Circuit Board (PCB). The process employs specialized equipment called ICT Testers, meticulously designed to pinpoint defects, shorts, opens, and other potential issues within the PCB assembly. The Crucial Role of PCBA ICT Testing Machine 1. Quality Assurance ICT is pivotal in ensuring the overall quality and reliability of electronic products. Early identification and rectification of defects in the production process help manufacturers avoid costly recalls, rework, and post-production issues. 2. Cost-Efficiency ICT significantly reduces manufacturing costs by identifying defects at an early stage. This results in fewer defective units reaching the end of the production line, minimizing waste and rework. 3. Faster Time-to-Market Manufacturers can expedite the production process with ICT by swiftly identifying and resolving issues. This leads to faster product launches, providing a competitive edge in the market. Unveiling the Functions of PCBA ICT Testing Machine The ICT Tester, the core of the In-Circuit Testing process, conducts a battery of tests on each PCB, including: 1. Continuity Testing Checks for open circuits, ensuring all connections are properly established. 2. Component Verification Verifies the presence and orientation of components, ensuring alignment with the PCB design. 3. Functional Testing Some ICT Testers execute functional tests, assessing electronic components' performance as per specifications. 4. Short Testing Identifies unintended connections or shorts between different components on the PCB. 5. Insulation Testing Checks for isolation between different circuits, ensuring no undesired connections or paths. 6. Programming and Configuration In some cases, ICT Testers are used to program and configure specific components on the PCB. Advantages of PCBA ICT Testing Machine 1. High Precision ICT offers unparalleled accuracy in defect detection, making it crucial in modern electronics manufacturing. 2. Speed and Efficiency ICT Testers enable rapid testing, allowing manufacturers to assess a large number of PCBs in a short time. 3. Customization ICT Tests can be tailored to suit specific PCB requirements, ensuring thorough evaluation of every design aspect. 4. Data Collection ICT Testers gather valuable data for process optimization and quality control. In-Circuit Testing (ICT) is fundamental in electronics manufacturing, safeguarding product quality, reducing costs, and accelerating time-to-market. The ICT Tester, with its precision and efficiency, positions manufacturers at the forefront of the highly competitive electronics industry. Embracing ICT is not just a choice; it's a necessity for manufacturers striving for excellence in their products. I.C.T is a leading manufacturer of full SMT line machines in the electronic manufacturing industry. Discover how we can enhance product quality, boost performance, and reduce costs. Contact us at info@smt11.com for reliable global supply, unparalleled efficiency, and superior technical service.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

High Speed IC Chip Programming Machine

Technical Library | 2023-11-25 07:46:13.0

In the dynamic realm of Surface Mount Technology (SMT), where efficiency and precision are paramount, I.C.T, a renowned SMT equipment manufacturer, proudly unveils its latest innovation – the I.C.T-910 Automatic IC Programming System. Crafted to cater to the intricate demands of SMD chip programming, this cutting-edge device vows to redefine your programming experience and elevate production capabilities. Programming system.png The Power of IC Programming System: As a beacon of excellence in IC Programming Systems, the I.C.T-910 seamlessly integrates advanced technology with user-friendly features. This system empowers manufacturers in the SMT industry, offering versatility in programming needs by accommodating a wide range of SMD chips. Precision Programming: The I.C.T-910 boasts unparalleled precision in programming SMD chips, ensuring accuracy in every generated code. In the SMT industry, where even the slightest error can lead to setbacks, this precision is indispensable. Efficiency Redefined: Accelerate your production timelines with the I.C.T-910's efficient programming capabilities. Engineered to optimize workflows, this system ensures rapid programming without compromising quality, recognizing that time is money in the SMT industry. User-Friendly Interface: Navigating the complexities of IC programming is simplified with the I.C.T-910's intuitive user interface. Operators, even without extensive programming expertise, can harness the system's power, minimizing the learning curve and maximizing productivity. Compatibility and Adaptability: The I.C.T-910 breaks free from limitations, supporting a wide array of SMD chip models. It is a versatile solution for diverse programming requirements, allowing you to stay ahead of technological advancements. Why Choose I.C.T-910 IC Programming System? 8 sets of 32-64sit burners Nozzle: 4pcs Camera: 2pcs (Component camera + Marking camera) UPH: 2000-3000PCS/H Package type: PLCC, JLCC, SOIC, QFP, TQFP, PQFP, VQFP, TSOP, SOP, TSOPII, PSOP, TSSOP, SON, EBGA, FBGA, VFBGA, BGA, CSP, SCSP, and so on. Compatibility: Adapters provided based on customer products. Simple operation interface: Modular and layered interface with pictures and texts for easy operation. System upgrade: Free software upgrade service. Reliability: Trust in the I.C.T-910, a programming system that prioritizes reliability. Rigorous testing ensures consistent and dependable performance, reducing the risk of programming errors and downtime. Elevate Your Competitiveness: Incorporate the I.C.T-910 into your production line to elevate competitiveness in the market. Stay ahead with a programming system designed to meet the demands of the fast-paced SMT industry. Embrace the Future with I.C.T-910: In a landscape where precision, efficiency, and adaptability are non-negotiable, the I.C.T-910 Automatic IC Programming System emerges as the game-changer for SMT manufacturers. Revolutionize your programming processes, enhance productivity, and future-proof your operations with the I.C.T-910. Choose I.C.T-910 and stay ahead in the SMT industry, ushering in the next era of IC programming excellence.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Lead-Free BGA Rework-Transition Issues

Technical Library | 2007-08-16 13:34:31.0

While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.

BEST Inc.

StencilQuick™ Lead-Free Solder Paste Rework Study

Technical Library | 2007-01-31 15:17:04.0

The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.

BEST Inc.

Lead-free Rework Process For Chip Scale Packages

Technical Library | 2007-03-28 10:18:33.0

Legislation against the use of lead in electronics has been the driving force behind the use of lead-free solders, surface finishes, and component lead finishes. The major concern in using lead-free solders in the assembly and rework Chip Scale Packages (CSPs) is the relatively high temperatures that the components and the boards experience. Fine-pitch CSPs have very low standoff heights following assembly making inspection and rework of these components more difficult. One other concern pertinent to rework is the temperature of the neighboring components during rework. These issues, coupled with the limitations of rework equipment to handle lead-free reflow temperatures, make the task of reworking lead-free assemblies more challenging.

Universal Instruments Corporation

Rework Stations: Meeting the Challenges of Lead-Free Solders

Technical Library | 2015-02-12 13:32:52.0

Market forces, particularly legislation against the use of lead in electronics, have driven electronics manufacturers towards lead-free solders for PCB assembly and rework. This approach creates challenges because of the relatively high temperatures needed for lead-free soldering. Additionally, lead-free solder alloys typically do not wet or wick as easily as Sn63Pb37 leaded types. As PCBs often include both BGAs and simpler discrete devices, a lead-free rework capability should include a suitable soldering station and a BGA rework station. This article shows how such equipment can be adapted to overcome the lead-free issues and provide a successful reworking facility.

Cupio Yestech Europe

  1 2 3 4 Next

lead free rework equipment searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Void Free Reflow Soldering

Software for SMT placement & AOI - Free Download.
2024 Eptac IPC Certification Training Schedule

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Voidless Reflow Soldering

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...