Technical Library: lead free selective soldering (Page 2 of 14)

Reduce Pollution of Process Gasses in an Air Reflow Oven

Technical Library | 2019-07-02 23:02:05.0

The introduction of lead-free solders resulted in a selection of different chemistries for solder pastes. The higher melting points of lead-free alloys required thermal heat resistant rosin systems and activators that are active at elevated temperatures. As a result, more frequent maintenance of the filtration systems is required and machine downtime is increased.Last year a different method of cleaning reflow ovens was introduced. Instead of cooling down the process gasses to condensate the residues, a catalyst was used to maintain the clean oven. Catalytic thermal oxidation of residues in the nitrogen atmosphere resulted in cleaner heating zones. The residues were transformed into carbon dioxide. This remaining small amount of char was collected in the catalyst. In air ovens the catalyst was not seen as a beneficial option because the air extracted out of the oven was immediately exhausted into the environment. When a catalyst is used in an air environment there is not only the carbon dioxide residues, but also water. When a catalyst is used in an air reflow oven the question is where the water is going to. Will it condensate in the process part of the oven or is the gas temperature high enough to keep it out of the process area? A major benefit of using a catalyst to clean the air before it is exhausted into the environment is that the air pollution is reduced dramatically. This will make environmental engineers happy and result in less pollution of our nature. Apart from this, the exhaust tubes remain clean which reduces the maintenance of air ovens.This paper will give more detailed information of catalyst systems during development and performance in production lines.

Vitronics Soltec

How Mitigation Techniques Affect Reliability Results for BGAs

Technical Library | 2016-11-17 14:58:02.0

Since 2006 RoHS requirements have required lead free solders to take the place of tin-lead solders in electronics. The problem is that in some environments the lead free solders are less reliable than the older tin-lead solders. One of the ways to solve this problem is to corner stake, edge bond or underfill the components. When considering what mitigation technique and material to use, the operating conditions must be characterized. The temperature range is important when selecting a material to use since the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are important properties. If improperly chosen, the mitigation material can cause more failures than an unmitigated component.

DfR Solutions

Lead-free Wave Soldering of Simple to Highly Complex Boards. Process Optimization

Technical Library | 2008-01-10 19:24:48.0

This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.

Vitronics Soltec

Optimizing Stencil Design For Lead-Free Smt Processing

Technical Library | 2023-06-12 19:18:24.0

As any new technology emerges, increasing levels of refinement are required to facilitate the mainstream implementation and continual improvement processes. In the case of lead-free processing, the initial hurdles of alloy and chemistry selection are cleared on the first level, providing a base process. The understanding gained from early work on the base process leads to the next level of refinement in optimizing the primary factors that influence yield. These factors may include thermal profiles, PWB surface finishes, component metallization, solder mask selection or stencil design.

Cookson Electronics Assembly Materials

A Study of Lead-Free Wave Soldering

Technical Library | 2007-05-02 15:00:17.0

This brief study of lead-free wave soldering focuses upon copper dissolution and solder maintenance issues. Unfortunately, it is determined that waste and changeover costs can dramatically increase with lead-free wave soldering.

AIM Solder

Position Accuracy Machines for Selective Soldering Fine Pitch Components

Technical Library | 2015-02-27 17:06:01.0

The drive towards fine pitch technology also affects the soldering processes. Selective soldering is a reliable soldering process for THT (through hole) connectors and offers a wide process window for designers. THT connectors can be soldered on the top and bottom side of boards, board in board, PCBs to metal shields or housing out of plastic or aluminum are today's state of the art. The materials that are used to make the solder connections require higher temperatures. Due to the introduction of lead-free alloys, the boards need more heat to get the barrels filled with solder. This not only affects the properties of the flux and components, but the operation temperatures of solder machines become higher (...)First the impact of temperature will be discussed for the separate process steps and for machine tooling. In the experimental part measurements are done to verify the accuracy that can be achieved using today's selective soldering machines. Dedicated tooling is designed to achieve special requirements with respect to component position accuracy.

Vitronics Soltec

Creating Solder Joint Reliability with SnCu Based Solders Some Practical Experiences

Technical Library | 2009-01-15 00:42:58.0

Tin-silver-copper has received much publicity in recent years as the lead-free solder of choice. SAC305 was endorsed by the IPC Solder Value Product Council in the United States as the preferred option for SMT assembly; most assemblers have transitioned to this alloy for their solder paste requirements. The SAC305 alloy due to its 3.0% content of silver is expensive when compared to traditional 63/37 for this reason many wave assemblers are opting for less costly options such as tin-copper based solders for their wave, selective and dip tinning operations.

Kester

Avoiding the Solder Void

Technical Library | 2013-02-08 22:56:47.0

Solder voiding is present in the majority solder joints and is generally accepted when the voids are small and the total void content is minimal. X-ray methods are the predominate method for solder void analysis but this method can be quite subjective for non grid array components due to the two dimensional aspects of X-ray images and software limitations. A novel method of making a copper "sandwich" to simulate under lead and under component environs during reflow has been developed and is discussed in detail. This method has enabled quantitative solder paste void analysis for lead free and specialty paste development and process refinement. Profile and paste storage effects on voiding are discussed. Additionally an optimal design and material selection from a solder void standpoint for a heat spreader on a BCC (Bumpered Chip Carrier) has been developed and is discussed.

Heraeus

Phase Convection™: The Lead-Free Solution

Technical Library | 2007-05-30 19:30:22.0

Transition to lead-free is accelerating and when considering constraints related to lead-free and conventional solder pastes, one concern is rising: flexibility. It would be dangerous to commit to lead-free only while the technology is not yet stabilized. Manufacturers need to consider all of the issues related to lead-free and need to find flexible equipment which are able to adapt to both conventional and lead-free constraints.

Vi TECHNOLOGY

Design Rules For Selective Soldering Assemblies

Technical Library | 2018-02-14 22:58:54.0

This document describes general guidelines and attention points for PCB design regarding selective soldering. The guidelines can be applied for Select Wave and/or Multi Wave soldering process in both leaded and leadfree alloy. When a PCB is designed according to these guidelines, a stable and solid solder-process can be guaranteed.

Vitronics Soltec


lead free selective soldering searches for Companies, Equipment, Machines, Suppliers & Information

Pillarhouse USA for handload Selective Soldering Needs

Training online, at your facility, or at one of our worldwide training centers"
One stop service for all SMT and PCB needs

High Throughput Reflow Oven
Voidless Reflow Soldering

World's Best Reflow Oven Customizable for Unique Applications
High Throughput Reflow Oven

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Hot selling SMT spare parts and professional SMT machine solutions

Internet marketing services for manufacturing companies