Technical Library: lead-free solder (Page 5 of 12)

Reliability of ENEPIG by Sequential Thermal Cycling and Aging

Technical Library | 2019-04-17 21:29:14.0

Electroless nickel electroless palladium immersion gold (ENEPIG) surface finish for printed circuit board (PCB) has now become a key surface finish that is used for both tin-lead and lead-free solder assemblies. This paper presents the reliability of land grid array (LGA) component packages with 1156 pads assembled with tin-lead solder onto PCBs with an ENEPIG finish and then subjected to thermal cycling and then isothermal aging.

Jet Propulsion Laboratory

Cleaning PCBs in Electronics: Understanding Today's Needs

Technical Library | 2022-02-16 15:34:32.0

Because of the phase-out of CFCs and HCFCs, standard solder pastes and fluxes evolved from RA and RMA fluxes to No-Clean, to low residue No-Clean, to very low residue No-Clean. Many companies came out with their cleaning solutions, aqueous and semi-aqueous, with each product release being more innovative than the previous one. Unfortunately for most of the suppliers of cleaners, two other trends appeared; lead-free soldering and the progressive miniaturization of electronic devices

Inventec Performance Chemicals

Effect of Surface Oxide on the Melting Behavior of Lead-Free Solder Nanowires and Nanorods

Technical Library | 2013-07-18 12:12:40.0

Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders.

Department of Chemical Engineering, University of Massachusetts

How Clean Is Clean?

Technical Library | 2009-03-19 20:23:54.0

Over the past several years, post-reflow defluxing of circuit assemblies has gained in popularity. Microminiaturization of components and boards, combined with higher expected reliability and increased product liability, have contributed to the prominence of defluxing. Lead-free solder paste - with its higher reflow temperatures and negative effects on flux - increase the likelihood of post-reflow defluxing to increase a product's reliability and aesthetic appearance.

Aqueous Technologies Corporation

Maximizing Process Control with Controlled Convection Rates

Technical Library | 2007-10-10 23:23:40.0

Process engineers, who are seeking to achieve the most effective and reproducible thermal transfer process, look to today's forced convection ovens for applications such as flipchip, BGA, and lead-free soldering. A forced convection process to maximize thermal uniformity can be best accomplished by employing static pressure generation in what's known as "closed loop convection".

BTU International

Startling Results From Reliability Testing

Technical Library | 2009-03-13 00:27:09.0

Open product reliability testing in Stockholm, Sweden in January as part of a live production event generated some quite startling results. It was apparent that many components simply cannot handle the high reflow temperatures of a lead-free soldering process, and that many surface-mount machine suppliers are battling significant problems with QFN packages and other components that are mounting edgeways (bill boarding). However, some suppliers have achieved good results.

Mycronic Technologies AB

Conductive Adhesives: TheWay Forward

Technical Library | 2010-11-04 19:56:25.0

Conductive Adhesives represent an intrinsically clean, simple and logical solution for a myriad of electrical interconnect challenges. Adhesives not only provide a "lead-free", "no clean" alternative to solder, these highly compatible materials offer viab

Cookson Electronics

Controlling Copper Build Up in Automatic Soldering Equipment Using Lead-Free Solder

Technical Library | 2008-11-20 00:46:10.0

The Sn/Ag/Cu family of alloys is the leading candidate for a lead-free alternative. The first part of this study was to determine if there is any significant difference between Sn/Ag/Cu alloys when used in automatic soldering equipment in terms of copper build-up in the system. The study compared two Sn/Ag/Cu alloys to determine if at processing temperatures one alloy would absorb less copper than the other alloy.

AIM Solder

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

Pad Cratering Susceptibility Testing with Acoustic Emission

Technical Library | 2015-08-13 15:52:40.0

Pad cratering has become more prevalent with the switch to lead free solders and lead free compatible laminates. This mainly is due to the use of higher reflow temperature, stiffer Pb-free solder alloys, and the more brittle Pb-free compatible laminates. However, pad cratering is difficult to detect by monitoring electric resistance since pad cratering initiates before an electrical failure occurs. Several methods have been developed to evaluate laminate materials' resistance to pad cratering. Pad-solder level tests include ball shear, ball pull and pin pull. The detailed methods for ball shear, ball pull, and pin pull testing are documented in an industry standard IPC-9708. Bansal, et al. proposed to use acoustic emission (AE) sensors to detect pad cratering during four-point bend test. Currently there is an industry-working group working on test guidelines for acoustic emission measurement during mechanical testing.

Agilent Technologies, Inc.


lead-free solder searches for Companies, Equipment, Machines, Suppliers & Information