Technical Library: lead-free soldering ally (Page 1 of 11)

Lead-Free BGA Rework-Transition Issues

Technical Library | 2007-08-16 13:34:31.0

While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.

BEST Inc.

StencilQuick™ Lead-Free Solder Paste Rework Study

Technical Library | 2007-01-31 15:17:04.0

The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.

BEST Inc.

Hidden Head-In-Pillow soldering failures

Technical Library | 2022-12-23 20:44:54.0

One of the upcoming reliability issues which is related to the lead-free solder introduction, are the headin-pillow solderability problems, mainly for BGA packages. These problems are due to excessive package warpage at reflow temperature. Both convex and concave warpage at reflow temperature can lead to the head-in-pillow problem where the solder paste and solder ball are in mechanical contact but not forming one uniform joint. With the thermo-Moiré profile measurements, this paper explains for two flex BGA packages the head-in-pillow. Both local and global height differences higher than 100 µm have been measured at solder reflow temperature. This can be sufficient to have no contact between the molten solder ball and solder paste. Finally, the impact of package drying is measured

IMEC

A Study of Lead-Free Wave Soldering

Technical Library | 2007-05-02 15:00:17.0

This brief study of lead-free wave soldering focuses upon copper dissolution and solder maintenance issues. Unfortunately, it is determined that waste and changeover costs can dramatically increase with lead-free wave soldering.

AIM Solder

Phase Convection™: The Lead-Free Solution

Technical Library | 2007-05-30 19:30:22.0

Transition to lead-free is accelerating and when considering constraints related to lead-free and conventional solder pastes, one concern is rising: flexibility. It would be dangerous to commit to lead-free only while the technology is not yet stabilized. Manufacturers need to consider all of the issues related to lead-free and need to find flexible equipment which are able to adapt to both conventional and lead-free constraints.

Vi TECHNOLOGY

A Study of Lead-Free Solder Alloys

Technical Library | 1999-05-09 14:14:51.0

With the ongoing concern regarding environmental pollutants, Iead is being targeted in the electronic assembly arena. This paper highlights lead-free solders and the different combinations of elemental makeups.

AIM Solder

Lead-free Rework Process For Chip Scale Packages

Technical Library | 2007-03-28 10:18:33.0

Legislation against the use of lead in electronics has been the driving force behind the use of lead-free solders, surface finishes, and component lead finishes. The major concern in using lead-free solders in the assembly and rework Chip Scale Packages (CSPs) is the relatively high temperatures that the components and the boards experience. Fine-pitch CSPs have very low standoff heights following assembly making inspection and rework of these components more difficult. One other concern pertinent to rework is the temperature of the neighboring components during rework. These issues, coupled with the limitations of rework equipment to handle lead-free reflow temperatures, make the task of reworking lead-free assemblies more challenging.

Universal Instruments Corporation

Rework Stations: Meeting the Challenges of Lead-Free Solders

Technical Library | 2015-02-12 13:32:52.0

Market forces, particularly legislation against the use of lead in electronics, have driven electronics manufacturers towards lead-free solders for PCB assembly and rework. This approach creates challenges because of the relatively high temperatures needed for lead-free soldering. Additionally, lead-free solder alloys typically do not wet or wick as easily as Sn63Pb37 leaded types. As PCBs often include both BGAs and simpler discrete devices, a lead-free rework capability should include a suitable soldering station and a BGA rework station. This article shows how such equipment can be adapted to overcome the lead-free issues and provide a successful reworking facility.

Cupio Yestech Europe

Novel Approaches for Minimizing Pad Cratering

Technical Library | 2015-10-29 18:19:33.0

With the electronic industry moving towards lead-free assembly, traditional SnPb-compatible laminates need to be replaced with lead-free compatible laminates that can withstand the higher reflow temperature required by lead-free solders. Lead-free compatible laminates with improved heat resistance have been developed to meet this challenge but they are typically more brittle than SnPb laminates causing some to be more susceptible to pad cratering. In this paper, two novel approaches for minimizing pad cratering will be discussed. Preliminary results which validate the two approaches will also be presented.

Alcatel-Lucent

Drop Shock Reliability of Lead-Free Alloys - Effect of Micro-Additives

Technical Library | 2009-06-11 19:27:21.0

The shock reliability of solder joints has become a major issue for the electronic industry partly because of the ever increasing popularity of portable electronics and partly due the transition to lead free solders.

Cookson Electronics

  1 2 3 4 5 6 7 8 9 10 Next

lead-free soldering ally searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Potting and Encapsulation Dispensing

Smt Feeder repair service centers in Europe, North, South America
PCB Handling Machine with CE

We offer SMT Nozzles, feeders and spare parts globally. Find out more
Voidless Reflow Soldering

High Precision Fluid Dispensers
PCB separator

Original SMT Feeders and spares for Panasonic, Fuji , Yamaha, Juki , Samsung