Technical Library | 2024-02-26 09:08:23.0
Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.
Technical Library | 2007-05-02 15:00:17.0
This brief study of lead-free wave soldering focuses upon copper dissolution and solder maintenance issues. Unfortunately, it is determined that waste and changeover costs can dramatically increase with lead-free wave soldering.
Technical Library | 2008-08-28 22:50:11.0
The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.
Technical Library | 2019-10-24 14:23:49.0
Presentation given by Fred Dimock during a seminar at the American Competitiveness Institute, ACI. •Recipe vs. Profile •Material Properties •Why profiles are shaped like they are. •Obtaining profiles •TC Accuracy •Profilers •Test vehicles •Process Window – Eutectic vs. Lead Free •Heat transfer •Oven Control
Technical Library | 2009-12-23 16:55:08.0
Leading up to the development of lead-free soldering alloys, Horizontal Convection* was developed for the reflow process. Getting the correct temperature profile, with the narrow process window in lead-free applications, is now more important than ever. In each chamber or zone, air is circulated toward one side of the oven above the PCB and toward the opposite side of the oven below the PCB, forming a cyclone around the board. The forced air circulation results in a uniform temperature profile along the entire circuit board assembly. This technology is ideal for the precise profiles needed for lead free soldering.
Technical Library | 2008-01-24 16:19:43.0
The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.
Technical Library | 2008-01-10 19:24:48.0
This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.
Technical Library | 2008-02-12 22:52:41.0
Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.
Technical Library | 2008-07-10 12:52:18.0
This paper reviews the J-STD-004 and how it is used in flux categorization and selection. It also discusses the major types of flux formulations available, and the design, process and reliability implications of using each type. The purpose of the paper is to help the reader make an informed choice when selecting wave solder fluxes for lead-free processing.
Technical Library | 2009-12-14 20:24:19.0
In the lead-free era, thermal profiling has a critical role in the SMT assembly process. We discuss the profiling, tools, practical issues, and inspection methods of golden boards, and related tools. As the process window narrows, profiling equipment and/or thermocouple (TC) errors must be taken into consideration. In addition, the accuracy and attachment method of the thermocouple will significantly impact critical assemblies.