Technical Library: leaded solder rohs componets (Page 1 of 2)

Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints

Technical Library | 2014-06-19 18:13:23.0

For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...

National Chiao Tung University

Mixed Metals Impact on Reliability

Technical Library | 2013-12-19 16:57:50.0

With the adoption of RoHS and implementation of Lead Free solders a major concern is how this will impact reliability. Both commercial and military hardware are impacted by this change even though military hardware is considered exempt from the requirements of RoHS. As the supply chain has moved to the new lead free alloys both markets are being forced to understand these impacts and form risk mitigation strategies to deal with the change. This paper documents the effect of mixing Leaded and Lead Free alloys on BGA devices and how this impacts reliability. Three of the most common pitch BGA packages are included in the study to determine if the risk is the same as pitches decrease

Nextek

How Mitigation Techniques Affect Reliability Results for BGAs

Technical Library | 2016-11-17 14:58:02.0

Since 2006 RoHS requirements have required lead free solders to take the place of tin-lead solders in electronics. The problem is that in some environments the lead free solders are less reliable than the older tin-lead solders. One of the ways to solve this problem is to corner stake, edge bond or underfill the components. When considering what mitigation technique and material to use, the operating conditions must be characterized. The temperature range is important when selecting a material to use since the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are important properties. If improperly chosen, the mitigation material can cause more failures than an unmitigated component.

DfR Solutions (acquired by ANSYS Inc)

The Impact of Reflowing A Pb-free Solder Alloy Using A Tin/Lead Solder Alloy Reflow Profile On Solder Joint Integrity.

Technical Library | 2008-04-29 15:50:45.0

The electronics industry is undergoing a materials evolution due to the pending Restriction of Hazardous Substances (RoHS) European Directive. Printed wiring board laminate suppliers, component fabricators, and printed wiring assembly operations are engaged in a multitude of investigations to determine what leadfree (Pbfree) material choices best fit their needs. The size and complexity of Pbfree implementation insures a transition period in which Pbfree and tin/lead solder finishes will be present on printed wiring assemblies

Rockwell Collins

Qualification Test Development for Creep Corrosion

Technical Library | 2021-04-08 00:34:16.0

Creep corrosion is not a new phenomenon, it has become more prevalent since the enactment of the European Union's Restriction of Hazardous Substance (RoHS) Directive on 1 July 2006. The directive bans the use of lead and other hazardous substances in products (where lead-based surface finishes offered excellent corrosion resistance). The higher melting temperatures of the lead-free solders and their poor wetting of copper metallization on PCBs forced changes to PCB laminates, surface finishes and processing temperature-time profiles. As a result, printed circuit boards might have higher risk of creep corrosion.

iNEMI (International Electronics Manufacturing Initiative)

High Reliability Lead-free Solder SN100C?Sn-0.7Cu-0.05Ni?Ge?

Technical Library | 2008-03-31 21:35:36.0

While the situation varies from country to country, nearly one year after the EU RoHS Directive came into force implementation of lead-free solder is progressing steadily. For lead-free soldering to be considered successful it is not sufficient just to have dealt with the challenges of mass production. It is also necessary to establish that the soldered joints produced are at least as reliable as those made with Sn-37Pb alloy. In this context "reliability" means the length of time in service that the initial functionality of the joint can be maintained. In this paper we will discuss some of the issues involved in solder joint reliability through a comparison of the properties of two alloys that are widely used for lead-free wave soldering, SAC305 (Sn-3.0Ag-0.5Cu) and the Sn, Cu, Ni, Ge alloy SN100C.

Nihon Superior Co., Ltd.

Aiming for High First-pass Yields in a Lead-free Environment

Technical Library | 2010-03-04 18:11:53.0

While the electronics manufacturing industry has been occupied with the challenge of RoHS compliance and with it, Pb-free soldering, established trends of increasing functionality and miniaturization have continued. The increasing use of ultra-fine pitch and area-array devices presents challenges in both printing and flux technology. With the decrease in both the size and the pitch of said components, new problems may arise, such as head-in-pillow and graping defects

Indium Corporation

Stencil Design for Lead-Free SMT Assembly

Technical Library | 2018-03-05 11:17:31.0

In order to comply with RoHS and WEEE directives, many circuit assemblers are transitioning some or all of their soldering processes from tin-lead to lead-free within the upcoming year. There are no drop-in replacement alloys for tin-lead solder, which is driving a fundamental technology change. This change is forcing manufacturers to take a closer look at everything associated with the assembly process: board and component materials, logistics and materials management, solder alloys and processing chemistries, and even soldering methods. Do not expect a dramatic change in soldering behavior when moving to lead-free solders. The melting points of the alloys are higher, but at molten temperatures the different alloys show similar behaviors in a number of respects. Expect subtler changes, especially near the edges of a process window that is assumed based on tin-lead experience rather than defined through lead-free experimentation. These small changes, many of them yet to be identified and understood, will manifest themselves with lower assembly yields. The key to keeping yields up during the transition to lead-free is quickly learning what and where the subtle distinctions are, and tuning the process to accommodate them.

Cookson Electronics

Reliability Screening of Lower Melting Point Pb-Free Alloys Containing Bi

Technical Library | 2015-07-01 16:51:43.0

Aerospace and military companies continue to exercise RoHS exemptions and to intensively research the long term attachment reliability of RoHS compliant solders. Their products require higher vibration, drop/shock performance, and combined-environment reliability than the conventional SAC305 alloy provides. The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. One possible route to improvement of the mechanical and thermo-mechanical properties of solder joints is the use of Pb-free solders with lower process temperatures. Lower temperatures help reduce the possibility of damaging the boards and components, and also may allow for the use of lower Tg board materials which are less prone to pad cratering defects. There are several Sn-Ag-Bi and Sn-Ag-Cu-Bi alloys which melt about 10°C lower than SAC305. The bismuth in these solder compositions not only reduces the melting temperature, but also improves thermo-mechanical behavior. An additional benefit of using Bi-containing solder alloys is the possibility to reduce the propensity to whisker growth

Honeywell International

How to protect your PCB from moisture related damage?

Technical Library | 2019-04-07 22:47:46.0

How to protect your PCB from moisture related damage? J-STD-033 put forward stricter regulation on the MSD exposure environment,when the exposure time exceed the tolerated,the moisture will penetrate into electronics,Moreover, the newest RoHS regulation will rise soldering temperature,the sudden high temperature will lead to expansion and cracking on electronic components. In order to decrease the moisture defect on PCB for the manufacturers in China,Climatest Symor® begin to concentrated on electronic dry cabinet R&D since early 1990s,we specialize in handling temperature and humidity for 20 years,and we provide best solution for PCB storage.

Symor Instrument Equipment Co.,Ltd

  1 2 Next

leaded solder rohs componets searches for Companies, Equipment, Machines, Suppliers & Information

Sell Used SMT & Test Equipment

High Precision Fluid Dispensers
PCB Handling Machine with CE

Training online, at your facility, or at one of our worldwide training centers"
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
SMT spare parts

500+ original new CF081CR CN081CR FEEDER in stock