Technical Library: long boards (Page 1 of 3)

DRY BOX DESICCANT STORAGE FOR PCB MANUFACTURING

Technical Library | 2023-09-23 22:31:52.0

Dry boxes can be implemented at various points within the Mfg. environment; for med-long term inventory, or for short term handling on the production floor, and in some cases (with certain conditions) as a process replacement for baking. Bare boards, raw components and partially assembled PCB's can benefit from ultra-low humidity storage.

XDry

Extreme Long Term Printed Circuit Board Surface Finish Solderability Assessment

Technical Library | 2021-01-28 01:55:00.0

Printed circuit board surface finishes are a topic of constant discussion as environmental influences, such as the Restriction of Hazardous Substances (RoHS) Directive or technology challenges, such as flip chip and 01005 passive components, initiate technology changes. These factors drive the need for greater control of processing characteristics like coplanarity and solderability, which influence the selection of surface finishes and impact costs as well as process robustness and integrity. The ideal printed circuit board finish would have good solderability, long shelf life, ease of fabrication/processing, robust environmental performance and provide dual soldering/wirebonding capabilities; unfortunately no single industry surface finish possesses all of these traits. The selection of a printed circuit board surface finish is ultimately a series of compromises for a given application.

Solderability Testing and Solutions Inc

Troubleshooting the STM32F429 board and restoring its operation

Technical Library | 2020-11-19 10:15:54.0

How to repair boards if they have been produced for a long time, and the documentation is lost? In this case, intelligent recognition systems can help, which will allow you to identify component pins without documentation for the board. In this article, we will find the STM32F429 board malfunctions without any documentation and in the least amount of time.

Engineering Physics Center of MSU

Long Term Thermal Reliability of Printed Circuit Board Materials

Technical Library | 2016-09-15 17:10:40.0

This paper describes the purpose, methodology, and results to date of thermal endurance testing performed at the company. The intent of this thermal aging testing is to establish long term reliability data for printed wiring board (PWB) materials for use in applications that require 20+ years (100,000+ hours) of operational life under different thermal conditions. Underwriters Laboratory (UL) testing only addresses unclad laminate (resin and glass) and not a fabricated PWB that undergoes many processing steps, includes copper and plated through holes, and has a complex mechanical structure. UL testing is based on a 5000 hour expected operation life of the electronic product. Therefore, there is a need to determine the dielectric breakdown / degradation of the composite printed circuit board material and mechanical structure over time and temperature for mission critical applications.

Amphenol Printed Circuit Board Technology

Reduce labor by automating your Selective Conformal Coating process

Technical Library | 2015-06-22 18:31:52.0

Applying conformal coatings to electronics has come a long way since the days of manually coating circuit boards. The extreme accuracy and highly repetitive process of automated conformal coatings is moving the electronics industry towards a more defect-free era for conformal coating. It enables new forms of electronics to become better protected, making it possible for electronics to withstand harsher environments than ever before. The following article is meant to aid in clarifying the advantages of specialty coating systems over manual applications for selective conformal coating.

ETS - Energy Technology Systems, Inc.

Beyond 0402M Placement: Process Considerations for 03015M Microchip Mounting

Technical Library | 2015-05-28 17:34:48.0

The printed circuit board assembly industry has long embraced the "Smaller, Lighter, Faster" mantra for electronic devices, especially in our ubiquitous mobile devices. As manufacturers increase smart phone functionality and capability, designers must adopt smaller components to facilitate high-density packaging. Measuring over 40% smaller than today's 0402M (0.4mmx0.2mm) microchip, the new 03015M (0.3mm×0.15mm) microchip epitomizes the bleeding-edge of surface mount component miniaturization. This presentation will explore board and component trends, and then delve into three critical areas for successful 03015M adoption: placement equipment, assembly materials, and process controls. Beyond machine requirements, the importance of taping specifications, component shape, solder fillet, spacing gap, and stencil design are explored. We will also examine how Adaptive Process Control can increase production yields and reduce defects by placing components to solder position rather than pad. Understanding the process considerations for 03015M component mounting today will help designers and manufacturers transition to successful placement tomorrow.

Panasonic Factory Solutions Company of America (PFSA)

An Investigation into Alternative Methods of Drying Moisture Sensitive Devices

Technical Library | 2021-11-26 14:34:07.0

The use of desiccant bags filled with Silica Sand and or Clay beads used in conjunction with a Moisture Barrier Bag to control moisture for storage of printed circuit boards has long been an accepted practice and standard from both JEDEC and IPC organizations. Additionally, the use heated ovens for baking off moisture using the evaporation process has also been a long#2;standing practice from these organizations. This paper on alternative drying methods will be accompanied by completed independent, unbiased tests conducted by Vinny Nguyen, an engineering student (now graduated) from San Jose State University. The accompanied paper will examine the performance levels of different technologies of desiccant bags to control moisture in enclosed spaces. The tests and equipment set were reviewed by an engineer and consultant to the Lockheed Martin Aerospace Division and the IPC - TM-650 2.6.28 test method was review by engineer from pSemi. The tests were designed to mimic performance tests outlined in Mil Spec 3464, which both IPC and JEDEC have adopted for their respective standards. The test examined variables including absorption capacity rates, weight gain and release of moisture back into the enclosed area. The presentation will also address and highlight: • Similarities of PCBs and Heavy Equipment as it applies to Inspections, Causes of Failure, Types of Corrosion and Moisture Collection Points. • Performance Attributes of Different Desiccant Technologies as it applies to shape, texture, change outs, labeling and regeneration. • Venn Diagram of Electromechanical Failure with the circles 1. Current 2. Contamination 3. Humidity Presentation Available

Steel Camel

Effect Of Board Clamping System On Solder Paste Print Quality

Technical Library | 2010-05-06 18:46:29.0

Stencil printing technology has come a long way since the early 80’s when SMT process gained importance in the electronics packaging industry. In those early days, components were fairly large, making the board design and printing process relatively simple. The current trend in product miniaturization has led to smaller and more complex board designs. This has resulted into designs with maximum area utilization of the board space. It is not uncommon, especially for hand held devices, to find components only a few millimeters from the edge of the board. The board clamping systems used in the printing process have become a significant area of concern based on the current board design trend.

Speedline Technologies, Inc.

Advanced Thermal Management Solutions on PCBs for High Power Applications

Technical Library | 2014-11-13 19:23:50.0

With increasing power loss of electrical components, thermal performance of an assembled device becomes one of the most important quality factors in electronic packaging. Due to the rapid advances in semiconductor technology, particularly in the regime of high-power components, the temperature dependence of the long-term reliability is a critical parameter and has to be considered with highest possible care during the design phase (...) The aim of this paper is to give a short overview about standard thermal solutions like thick copper, thermal vias, plugged vias or metal core based PCBs. Furthermore, attention will be turned on the development of copper filled thermal vias in thin board constructions...

Tridonic GmbH & Co KG

Numerical Study on New Pin Pull Test for Pad Cratering Of PCB

Technical Library | 2015-02-19 16:54:34.0

Pad cratering is an important failure mode besides crack of solder joint as it’ll pass the regular test but have impact on the long term reliability of the product. A new pin pull test method with solder ball attached and positioning the test board at an angle of 30º is employed to study the strength of pad cratering. This new method clearly reveals the failure mechanism. And a proper way to interpret the finite element analysis (FEA) result is discussed. Impact of pad dimension, width and angle of copper trace on the strength is included. Some findings not included in previous research could help to guide the design for better performance

Flex (Flextronics International)

  1 2 3 Next

long boards searches for Companies, Equipment, Machines, Suppliers & Information