Technical Library: manufacturing co (Page 1 of 1)

Introduction to the manufacturing process of anti static ic tubes

Technical Library | 2019-01-20 22:47:35.0

With the rapid development of the electronics industry, more and more components such as integrated circuits and connectors, relays, power modules, etc. need to be packaged with IC tubes. The anti static ic tubes is actually a kind of pvc plastic(reference to : What are the materials for IC tubes) profile, the size varies with the shape of the installed product, the precision requirement is high, the wall thickness should be controlled within ±0.1mm, and the surface is required to have no impurity spots, smooth and transparent. The IC packaging tubes produced by Sewate Technology Co., Ltd. are extruded. The typical process flow is: extrusion, vacuum adsorption setting, traction, fixed length cutting and directional discharge, deburring, immersion antistatic liquid, drying, testing, packaging and storage

Shenzhen Sewate Technology Co.,Ltd

C02 vs Fiber vs UV Lasers for Aerospace Parts

Technical Library | 2024-09-10 18:21:20.0

A review of laser technologies CO2, Fiber and Ultraviolet used to manufacture components for the aerospace industry.

A-Laser, Inc.

Printed Circuit Board Tracking with RFID: Speed, Efficiency and Productivity Made Simple.

Technical Library | 2008-05-07 17:54:58.0

Tracking goods through manufacturing was originally accomplished with pencil, paper and human input. Barcodes introduced an automated, machine-readable tracking mechanism that streamlined all types of manufacturing. But modern printed circuit board (PCB) assemblies are running into limitations because of barcode labels. And though barcodes and RFID tags will co-exist, the relatively large barcode labels have to find increasingly scarce real estate on high density boards.

Texas Instruments

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications

Technical Library | 2019-01-09 19:19:52.0

The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.

Koki Company LTD

  1  

manufacturing co searches for Companies, Equipment, Machines, Suppliers & Information