Technical Library | 2023-02-13 19:23:18.0
Spontaneously forming tin whiskers, which emerge unpredictably from pure tin surfaces, have regained prevalence as a topic within the electronics research community. This has resulted from the ROHS-driven conversion to "lead-free" solderable finish processes. Intrinsic stresses (and/or gradients) in plated films are considered to be a primary driving force behind the growth of tin whiskers. This paper compares the formation of tin whiskers on nanocrystalline and conventional polycrystalline copper deposits. Nanocrystalline copper under-metal deposits were investigated, in terms of their ability to mitigate whisker formation, because of their fine grain size and reduced film stress. Pure tin films were deposited using matte and bright electroplating, electroless plating, and electron beam evaporation. The samples were then subjected to thermal cycling conditions in order to expedite whisker growth. The resultant surface morphologies and whisker formations were evaluated.
Technical Library | 2008-04-29 15:50:45.0
The electronics industry is undergoing a materials evolution due to the pending Restriction of Hazardous Substances (RoHS) European Directive. Printed wiring board laminate suppliers, component fabricators, and printed wiring assembly operations are engaged in a multitude of investigations to determine what leadfree (Pbfree) material choices best fit their needs. The size and complexity of Pbfree implementation insures a transition period in which Pbfree and tin/lead solder finishes will be present on printed wiring assemblies
1 |